The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics

Zhou, Yinghong, Wu, Chengtie, & Xiao, Yin (2012) The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics. Acta Biomaterialia, 8(6), pp. 2307-2316.

View at publisher


The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.

Impact and interest:

46 citations in Scopus
46 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 49564
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Ca7Si2P2O16 bioceramics, Periodontal ligament cells, Proliferation, Differentiation, Gene expression
DOI: 10.1016/j.actbio.2012.03.012
ISSN: 1742-7061
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Elsevier
Deposited On: 05 Apr 2012 01:27
Last Modified: 15 Jul 2017 11:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page