QUT ePrints

Preparation and characterisation of composites from starch and sugar cane fibre

Gilfillan, William N., Nguyen, Danny M. T., Sopade, Peter A., & Doherty, William O. S. (2012) Preparation and characterisation of composites from starch and sugar cane fibre. Industrial Crops and Products, 40, pp. 45-54.

View at publisher

Abstract

The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.

Impact and interest:

11 citations in Scopus
Search Google Scholar™
7 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

169 since deposited on 21 May 2012
62 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 50486
Item Type: Journal Article
Keywords: Biodegradable; Composites; Polymers; Starch; Sugar cane fibre
DOI: 10.1016/j.indcrop.2012.02.036
ISSN: 0926-6690
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Chemical Characterisation of Materials (030301)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Physical Chemistry of Materials (030304)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Polymerisation Mechanisms (030305)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Synthesis of Materials (030306)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Research Centres > Centre for Tropical Crops and Biocommodities
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Elsevier B.V.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Industrial Crops and Products. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Industrial Crops and Products, [Volume 40, (November 2012)] DOI: 10.1016/j.indcrop.2012.02.036
Deposited On: 22 May 2012 09:49
Last Modified: 07 May 2014 10:29

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page