QUT ePrints

Damage quantification techniques in acoustic emission monitoring

Kaphle, Manindra R., Tan, Andy, Thambiratnam, David, & Chan, Tommy H.T. (2011) Damage quantification techniques in acoustic emission monitoring. In WCEAM 2011Sixth World Congress onEngineering Asset Management, 2nd - 5th October, 2011, Cincinnati, OH, USA.

View at publisher

Abstract

Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

187 since deposited on 29 May 2012
64 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 50626
Item Type: Conference Paper
Keywords: Acoustic emission, structural health monitoring, damage quantification, b-value analysis
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Acoustics and Noise Control (excl. Architectural Acoustics) (091301)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2011 the authors.
Deposited On: 29 May 2012 11:49
Last Modified: 14 Feb 2013 22:23

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page