QUT ePrints

Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

Capasso, Andrea, Salamandra, Luigi, Di Carlo, Aldo, Bell, John M., & Motta, Nunzio (2012) Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells. Beilstein Journal of Nanotechnology, 3, pp. 524-532.

View at publisher

Abstract

The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

Impact and interest:

3 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

113 since deposited on 06 Aug 2012
48 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 50696
Item Type: Journal Article
Keywords: Carbon nanotubes, Indium tin oxide, Chemical vapor deposition, Low temperature, Organic solar cell, P3HT, Kelvin probe
DOI: 10.3762/bjnano.3.60
ISSN: 2190-4286
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Photodetectors Optical Sensors and Solar Cells (090605)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Molecular and Organic Electronics (100702)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanofabrication Growth and Self Assembly (100706)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanomaterials (100708)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Capasso et al; licensee Beilstein-Institut.
Copyright Statement: This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (http://www.beilstein-journals.org/bjnano)
Deposited On: 06 Aug 2012 12:50
Last Modified: 13 Aug 2012 22:29

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page