QUT ePrints

Empirical evaluation of alternative approaches in identifying crash hot spots

Huang, Helai , Chin, Hoong Chor , & Haque, Md. Mazharul (2009) Empirical evaluation of alternative approaches in identifying crash hot spots. Transportation Research Record, 2103, pp. 32-41.

View at publisher

Abstract

This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.

Impact and interest:

16 citations in Scopus
Search Google Scholar™
12 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 51204
Item Type: Journal Article
Keywords: Hot spot identification, Empirical Bayes method, Decision parameters, Log-normal model, Ranking methods
DOI: 10.3141/2103-05
ISSN: 0361-1981
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > STATISTICS (010400) > Applied Statistics (010401)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Transport Engineering (090507)
Divisions: Current > Research Centres > Centre for Accident Research & Road Safety - Qld (CARRS-Q)
Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 29 Jun 2012 11:38
Last Modified: 22 Mar 2013 13:24

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page