A decision table method for randomness measurement

Alkharboush, Nawaf & Li, Yuefeng (2012) A decision table method for randomness measurement. In Watada, Junzo, Watanabe, Toyohide, & Philips-Wren, Gloria (Eds.) Intelligent Decision Technologies: Proceedings of the 4th International Conference on Intelligent Decision Technologies (IDT'2012) - Volume 1, Springer-Verlag , Japan, pp. 13-23.

View at publisher


Data quality has become a major concern for organisations. The rapid growth in the size and technology of a databases and data warehouses has brought significant advantages in accessing, storing, and retrieving information. At the same time, great challenges arise with rapid data throughput and heterogeneous accesses in terms of maintaining high data quality. Yet, despite the importance of data quality, literature has usually condensed data quality into detecting and correcting poor data such as outliers, incomplete or inaccurate values. As a result, organisations are unable to efficiently and effectively assess data quality. Having an accurate and proper data quality assessment method will enable users to benchmark their systems and monitor their improvement. This paper introduces a granules mining for measuring the random degree of error data which will enable decision makers to conduct accurate quality assessment and allocate the most severe data, thereby providing an accurate estimation of human and financial resources for conducting quality improvement tasks.

Impact and interest:

1 citations in Scopus
1 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 51522
Item Type: Conference Paper
Refereed: Yes
Keywords: Data mining, Quality assessment, Data warehouse
DOI: 10.1007/978-3-642-29977-3_2
ISBN: 978-3-642-29976-6
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Pattern Recognition and Data Mining (080109)
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Springer
Deposited On: 10 Jul 2012 02:56
Last Modified: 16 Jul 2017 01:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page