QUT ePrints

Quantum key distribution in the classical authenticated key exchange framework

Mosca, Michele, Stebila, Douglas, & Ustaoglu, Berkant (2013) Quantum key distribution in the classical authenticated key exchange framework. Lecture Notes in Computer Science, 7932, pp. 136-154.

View at publisher

Abstract

Key establishment is a crucial primitive for building secure channels in a multi-party setting. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel.

Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, although existing security proofs of QKD typically assume idealized authentication. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol.

We describe a security model for quantum key distribution extending classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

29 since deposited on 11 Jul 2012
3 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 51575
Item Type: Journal Article
Additional Information: Post-Quantum Cryptography. 5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings
Additional URLs:
Keywords: Quantum key distribution, Authenticated key exchange, Cryptographic protocols, Security models
DOI: 10.1007/978-3-642-38616-9_9
ISSN: 0302-9743
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Springer-Verlag Berlin Heidelberg
Copyright Statement: The final publication is available at link.springer.com
Deposited On: 12 Jul 2012 08:22
Last Modified: 02 Jul 2014 06:00

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page