Unsteady natural convection within a differentially heated enclosure of sinusoidal corrugated side walls

Hasan, Muhammad N., Saha, Suvash C., & Gu, YuanTong (2012) Unsteady natural convection within a differentially heated enclosure of sinusoidal corrugated side walls. International Journal of Heat and Mass Transfer, 55(21-22), pp. 5696-5708.

View at publisher


Numerically investigation of natural convection within a differentially heated modified square enclosure with sinusoidally corrugated side walls has been performed for different values of Rayleigh number. The fluid inside the enclosure considered is air and is quiescent, initially. The top and bottom surfaces are flat and considered as adiabatic. Results reveal three main stages: an initial stage, a transitory or oscillatory stage and a steady stage for the development of natural convection flow inside the corrugated cavity. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Investigation has been performed for the Rayleigh number, Ra ranging from 105 to 108 with variation of corrugation amplitude and frequency. Constant physical properties for the fluid medium have been assumed. Results have been presented in terms of the isotherms, streamlines, temperature plots, average Nusselt numbers, traveling waves and thermal boundary layer thickness plots, temperature and velocity profiles. The effects of sudden differential heating and its consequent transient behavior on fluid flow and heat transfer characteristics have been observed for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.

Impact and interest:

14 citations in Scopus
Search Google Scholar™
13 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

322 since deposited on 17 Jul 2012
42 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 52016
Item Type: Journal Article
Refereed: Yes
Keywords: Natural Convection, Transient Behavior, Sinusoidal Corrugation, Differentially Heating, High Rayleigh Number
DOI: 10.1016/j.ijheatmasstransfer.2012.05.065
ISSN: 0017-9310
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > NUMERICAL AND COMPUTATIONAL MATHEMATICS (010300)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in International Journal of Heat and Mass Transfer. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Heat and Mass Transfer, [VOL 55, ISSUE 21-22, (2012)] DOI: 10.1016/j.ijheatmasstransfer.2012.05.065
Deposited On: 17 Jul 2012 22:57
Last Modified: 06 Nov 2013 16:12

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page