QUT ePrints

Towards determining soft tissue properties for modelling spine surgery : current progress and challenges

Little, J. Paige & Adam, Clayton J. (2012) Towards determining soft tissue properties for modelling spine surgery : current progress and challenges. Medical & Biological Engineering & Computing, 50(2), pp. 199-209.

View at publisher

Abstract

Current complication rates for adolescent scoliosis surgery necessitate the development of better surgical planning tools to improve outcomes. Here we present our approach to developing finite element models of the thoracolumbar spine for deformity surgery simulation, with patient-specific model anatomy based on low-dose pre-operative computed tomography scans. In a first step towards defining patient-specific tissue properties, an initial 'benchmark' set of properties were used to simulate a clinically performed pre-operative spinal flexibility assessment, the fulcrum bending radiograph. Clinical data for ten patients were compared with the simulated results for this assessment and in cases where these data differed by more than 10%, soft tissue properties for the costo-vertebral joint (CVJt) were altered to achieve better agreement. Results from these analyses showed that changing the CVJt stiffness resulted in acceptable agreement between clinical and simulated flexibility in two of the six cases. In light of these results and those of our previous studies in this area, it is suggested that spinal flexibility in the fulcrum bending test is not governed by any single soft tissue structure acting in isolation. More detailed biomechanical characterisation of the fulcrum bending test is required to provide better data for determination of patient-specific soft tissue properties.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

113 since deposited on 25 Jul 2012
62 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 52057
Item Type: Journal Article
Keywords: Spinal deformity surgery, Scoliosis, patient-specific biomechanical model, finite element method, soft tissue properties
DOI: 10.1007/s11517-011-0848-6
ISSN: 1741-0444
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomedical Engineering not elsewhere classified (090399)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300) > Orthopaedics (110314)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Springer
Deposited On: 25 Jul 2012 10:54
Last Modified: 26 Jul 2012 13:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page