QUT ePrints

Thermal performance of non-load bearing LSF walls using numerical studies

Poologanathan, Keerthan & Mahendran, Mahen (2012) Thermal performance of non-load bearing LSF walls using numerical studies. In 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM 2012), 11-14 December 2012, Sydney, NSW. (In Press)

View at publisher

Abstract

Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

106 since deposited on 13 Aug 2012
25 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 53087
Item Type: Conference Paper
Funders: ARC
Keywords: Fire safety, Light gauge cold-formed steel frame (LSF), New composite panel system, Finite element thermal models, real fire conditions, Non-Load Bearing
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Funding:
  • ARC DISCOVERY GRANT/DP0986575
Copyright Owner: Copyright 2012 [please consult the author]
Deposited On: 14 Aug 2012 09:27
Last Modified: 02 Oct 2014 11:30

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page