How important is length? : mechanical testing and measurement of a cemented, polished, tapered femoral implant

Roe, John Andrew (2011) How important is length? : mechanical testing and measurement of a cemented, polished, tapered femoral implant. PhD thesis, Queensland University of Technology.


Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous.

There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations.

The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature.

Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required.

The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated.

The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability.

A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous.

An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated.

However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

150 since deposited on 17 Aug 2012
17 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 53200
Item Type: QUT Thesis (PhD)
Supervisor: Crawford, Ross, Pearcy, Mark, & Wilson, Lance
Keywords: acrylic cement mechanical properties, axial stability, cemented THA, cement-implant interface area, debonding force, exeter femoral implant, implant design, implant length, implant size, in-vitro testing, polished tapered implant, taper angle, ‘taper-lock’, torsional stability
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Institution: Queensland University of Technology
Deposited On: 17 Aug 2012 06:11
Last Modified: 17 Aug 2012 06:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page