Controlled emergency landing of an unpowered unmanned aerial system

Mejias, Luis & Eng, Pillar C. (2012) Controlled emergency landing of an unpowered unmanned aerial system. Journal of Intelligent & Robotic Systems.

View at publisher


The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.

Impact and interest:

9 citations in Scopus
1 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

217 since deposited on 09 Sep 2012
8 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 53517
Item Type: Journal Article
Refereed: Yes
Keywords: UAS Forced Landing, UAS Path Planning, Flight Control
DOI: 10.1007/s10846-012-9767-5
ISSN: 1573-0409
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Aircraft Performance and Flight Control Systems (090104)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Springer
Copyright Statement: The original publication is available at SpringerLink
Deposited On: 09 Sep 2012 23:24
Last Modified: 30 Jun 2017 08:16

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page