Reducing actuator switchings for motion control of autonomous underwater vehicles

Chyba, Monique, Grammatico, Sergio, Huynh, Van T., Marriott, John, Piccoli, Benedetto, & Smith, Ryan N. (2013) Reducing actuator switchings for motion control of autonomous underwater vehicles. In Proceedings of the American Control Conference (ACC 2013), IEEE, Renaissance Washington, DC Downtown Hotel, Washington, D.C., pp. 1406-1411.

[img] Submitted Version (PDF 412kB)
Administrators only | Request a copy from author


A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.

Impact and interest:

5 citations in Scopus
5 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 53801
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: actuator switching, optimal control, autonomous underwater vehicles, piece-wise constant strategy
ISBN: 978-147990177-7
ISSN: 0743-1619
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Dynamical Systems in Applications (010204)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Adaptive Agents and Intelligent Robotics (080101)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MARITIME ENGINEERING (091100) > Special Vehicles (091106)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
  • ONR/N62909-11-1-4046
Copyright Owner: © 2013 AACC American Automatic Control Council.
Deposited On: 23 Sep 2012 22:37
Last Modified: 21 Sep 2014 06:30

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page