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Abstract. This paper addresses the issue of analogical inference, and its poten-
tial role as the mediator of new therapeutic discoveries, by using disjunction op-
erators based on quantum connectives to combine many potential reasoning path-
ways into a single search expression. In it, we extend our previous work in which
we developed an approach to analogical retrieval using the Predication-based Se-
mantic Indexing (PSI) model, which encodes both concepts and the relationships
between them in high-dimensional vector space. As in our previous work, we
leverage the ability of PSI to infer predicate pathways connecting two example
concepts, in this case comprising of known therapeutic relationships. For exam-
ple, given that drug x TREATS disease z, we might infer the predicate pathway
drug x INTERACTS WITH gene y ASSOCIATED WITH disease z, and use this
pathway to search for drugs related to another disease in similar ways. As biolog-
ical systems tend to be characterized by networks of relationships, we evaluate
the ability of quantum-inspired operators to mediate inference and retrieval across
multiple relations, by testing the ability of different approaches to recover known
therapeutic relationships. In addition, we introduce a novel complex vector based
implementation of PSI, based on Plate’s Circular Holographic Reduced Repre-
sentations, which we utilize for all experiments in addition to the binary vector
based approach we have applied in our previous research.

Keywords: Distributional Semantics, Vector Symbolic Architectures, Literature-based
Discovery, Abductive Reasoning

1 Introduction

The field of Literature-based Discovery (LBD) has been an important application area
for quantum-inspired methodologies in recent years [1, 2]. In particular, the ability of
quantum-inspired approaches to measure implicit relatedness between composite rep-
resentations of concepts holistically offers advantages in scalability and efficiency over
rule-based approaches that require the decomposition of conceptual representations into
their atomic components. In previous work, we have shown that these holistic ap-
proaches can be used to facilitate analogical retrieval across a set of object-relation-
object triplets, or predications extracted from the biomedical literature, to solve simple



proportional analogy problems of the form “A is to B as ? is to C” [2]. This mechanism
provides the means to infer the predicate pathway connecting a disease to a drug that
is known to treat it, and also to use the vector representation of this pathway to search
for treatments connected to some other disease in the same way. However, the identi-
fication and re-use of individual pathways is of limited utility for the discovery of new
therapies, as drugs tend to activate multiple pathways and targets simultaneously [3].
This suggests that modeling analogical retrieval across multiple pathways may facili-
tate the identification of novel therapeutic relationships. In this paper, we use quantum
models of disjunction and superposition to achieve this end, allowing us to combine
many compound stimuli to perform searches that would be brittle and computationally
prohibitive using traditional symbolic methods. In doing so, we create a superposition
of compound systems that has not been (and probably cannot be) represented as a prod-
uct of two individual simple systems, a phenomenon known in the quantum literature as
“entanglement”. It is our hypothesis that modeling multiple pathways will improve the
quality of analogical retrieval, and we evaluate this hypothesis by comparing the extent
to which retrieval across individual and multiple pathways facilitates recovery of a held
out set of cancer therapies. We evaluate these approaches in both binary and complex
vector space, leveraging recent enhancements to the Semantic Vectors package [4].

2 Background

Distributional models of language, such as Latent Semantic Analysis (LSA) [5] derive
human-like estimates of the semantic relatedness between terms from large volumes of
unannotated natural language text. A desirable property of some distributional models is
the ability to learn meaningful associations between terms that do not co-occur directly
in the text concerned. This ability has been termed indirect inference and it has been ar-
gued that it is essential to LSA’s human-like performance on a number of cognitive tasks
[5]. Indirect inference is also a fundamental concern of the field of Literature-based Dis-
covery (LBD), which aims to promote scientific discovery by identifying meaningful
connections between terms, and concepts, in the scientific literature that have not yet
occurred together in any published document [6], and several authors have explored the
ability of distributional models to facilitate discoveries of this nature [7–9]. A limita-
tion of the use of these models for LBD is that they capture general relatedness between
terms or concepts only, without encoding the nature of the relationships concerned. As
economic constraints limit the number of candidate therapies that can be advanced for
further testing, there is a pressing need for the development of methods that selectively
emphasize plausible therapeutic hypotheses. In recognition of the limitations of general
relatedness, LBD researchers have recently begun exploring the notion of a discovery
pattern, a sequence of relationship types that suggests a potential discovery [10]. For
example, if a certain drug were known to inhibit a gene associated with a particular
disease, it would follow that this drug may be a potential candidate therapy for this dis-
ease. These patterns have largely been pursued using rule-based approaches in which
concepts, and the relationships between them, are represented as discrete entities each
of which must be explored stepwise to find a pathway from treatment to disease (see for
example [11]). However, given the rapid expansion of the number of logical connections



between concepts in the biomedical literature [12, 13], the development of methods to
directly identify meaningful connections across specific patterns of relationships is a
desirable alternative. To this end, we have developed PSI [2, 14, 15], which encodes
concepts and their relations as vectors in high-dimensional space, facilitating efficient
search and indirect inference without the need to unpack and explore individual rela-
tionships. In previously published work, we have shown that PSI can be used to infer
relationship paths (such as INHIBITS-ASSOCIATED WITH) from one concept to an-
other, and that these inferred pathways can be used to direct search through predication
space for concepts related to a third concept in the same way [2]. However, the iden-
tification and re-use of individual pathways is of limited utility for discovery of new
therapies, as drugs tend to activate multiple pathways simultaneously [3]. In this paper,
we evaluate the utility of the PSI model as a means to identify therapeutic relationships
by accommodating drug-disease relationships that include multiple relationship paths.
In some cases, the quantum disjunction operator [16] is applied to measure the relat-
edness between concepts that are connected across multiple relationship paths, and in
others we use superposition of vectors to achieve this end. In the section that follows,
we introduce the fundamental operations that mediate PSI, and the notation used to
describe them. We then illustrate the way in which analogy occurs in PSI space, and
proceed to describe the empirical component of this work, in which we use analogical
relations drawn from one disease, or set of diseases, to seek treatments for another.

3 Mathematical Structure and Methods

The methods in this paper all use high-dimensional vectors to represent concepts. There
are many ways of generating such representations. Ours is based upon the Random In-
dexing paradigm using terminology as described in [9] and developed in [2], in which
semantic vectors are built as superpositions of randomly generated elemental vectors,
during the process of training. Throughout this paper we will write E(X) and S(X) for
the elemental and semantic vectors associated with the concept X. In addition to concept
vectors, we include vectors for relations. For example, E(R) would denote the elemen-
tal vector for the relation R. Many relationships are directional, and we will use Rinv to
denote the inverse of R, so that A R B and B Rinv A carry the same external meaning
(though they may in some cases be represented by different vectors). To encode typed
relations into high-dimensional vector spaces, we utilize two members of a family of
representational approaches collectively known as Vector Symbolic Architectures [17].
VSAs originated from Smolenksy’s tensor-product based approach [18], but differ from
it in that they depend on vector operations that produce products of the same dimension-
ality as the component vectors. The VSAs we will use in our experiments are Kanerva’s
Binary Spatter Code (BSP) [19], which uses high-dimensional binary vectors as a rep-
resentational unit, and Plate’s Circular Holographic Reduced Representation (CHRR)
[20], which uses circular vectors, vectors in which each dimension represents an angle
between −π and π. CHRRs have recently been used to encode information related to
word order in a distributional model [21]. Before we discuss further distinctions be-
tween these models, we will describe the fundamental operations of VSAs, which are
common to both of them. The primary operations facilitated by VSAs are binding and



bundling. Binding is a multiplication-like operator through which two vectors are com-
bined to form a third vector C that is dissimilar from either of its component vectors A
and B. We will use the symbol “⊗” for binding, and the symbol “�” for the inverse of
binding throughout this paper. It is important that this operator be invertible: if C = A⊗
B, then A� C = A� (A⊗ B) = B. In some models, this recovery may be approximate,
but the robust nature of the representation guarantees that A � C is similar enough to
B that B can easily be recognized as the best candidate for A � C in the original set
of concepts. Thus the invertible nature of the bind operator facilitates the retrieval of
information encoded during the binding process. Bundling is an addition-like operator,
through which superposition of vectors is achieved. For example, vector addition fol-
lowed by normalization is a commonly employed bundling operator. Bundling results
in a vector that is maximally similar to its component vectors. We will write the usual
“+” for bundling, and the computer science “+=” for “bundle the left hand side with
the right hand side and assign the outcome to the symbol on the left hand side.” So for
example, S(A) += E(B) could also be expressed as S(A) = S(A) + E(B), and is a
standard operation in training. Table 1 summarizes the differences between the binary
(BSP) and complex (CHRR) vector implementations used in this work.

Table 1. Comparison between CHRR and BSP

Implementation Complex/Circular Binary

Semantic vectors S(X)
Complex (circular) vectors
d O(1000)

Binary vectors
d O(10,000)

Elemental vectors E(X) Dense complex [−π, π] Dense binary {0,1}

Bundling (Superposition) Pairwise vector sum Majority vote

Binding
Convolution
(mod 2π addition of angles)

Pairwise XOR
(mod 2 addition)

Release Convolution with inverse Pairwise XOR

In the case of the spatter code, pairwise exclusive or (XOR) is used as a binding opera-
tor: X ⊗ Y = X XOR Y . As it is its own inverse, the binding and decoding processes
are identical (⊗=�). For bundling, the spatter code employs a majority vote: if the com-
ponent vectors of the bundle have more ones than zeros in a dimension, this dimension
will have a value of one, with ties broken at random (for example, bundling the vec-
tors 011 and 010 may produce either 010 or 011 with equal probability). In the case of
CHRR, binding is accomplished using circular convolution, accomplished by pairwise
multiplication:X⊗Y = {X1Y1, X2Y2, .....Xn−1Yn−1, XnYn}, which is equivalent to
addition of the phase angles of the circular vectors concerned, as they are of unit length.
The inverse of binding is obtained by binding to the inverse of the vector concerned:
X � Y = X ⊗ Y −1, where the inverse of a vector Y , Y −1 is the vector with a phase
angle that when added to that of Y produces a phase angle of 0. As each dimension in a
circular vector can be represented as a vector on the unit circle, superposition is accom-
plished in a pairwise manner by adding the unit circle vectors in a given dimension, and



normalizing the result for each circular component of the vector. In the implementation
used in our experiments, normalization is delayed until after training has concluded, so
that the sequence in which superposition occurs is not relevant. Once a vector represen-
tation for a concept has been built up by binding and/or bundling, it is possible to apply
an operator that reverses the binding process to the vector as a whole, allowing us to
direct search in PSI space without explicitly representing the individual relations of a
concept. This property is appealing for the purpose of modeling analogy, as similarity
is measured on the basis of a superposed product without the need to decompose it [20].

Predication-based Semantic Indexing: PSI takes as input sets of concept-relation-
concept triplets, or predications. For these experiments, as well as those in our previous
work, the PSI space is derived from a set of 22,669,964 predications extracted from
citations added to MEDLINE over the past decade by the SemRep natural language
processing system [22], which extracts predications from biomedical text using domain
knowledge in the Unified Medical Language System [23]. For example, the predication
“fluoxetine TREATS Major Depressive Disorder” (MDD) is extracted from “patients
who have been successfully treated with fluoxetine for major depression.” In a recent
evaluation of SemRep, Kilicoglu et al. report .75 precision and .64 recall (.69 f-score)
[24]. The first step in PSI is the generation of semantic and elemental vectors for each
concept, S(C) andE(C). We also generate elemental vectors for each relation, or pred-
icate E(P). We then encode each predication in the set by binding E(C1) to E(P) and
bundling this into S(C2). The reverse of this process is also performed. In practice
statistical weighting metrics are used to decrease the influence of frequently occurring
concepts, and in some cases predicates. In the implementation we utilized for these
experiments, we used inverse document frequency (idf ) as a global weighting metric,
and log(1+frequency of predication) as a local metric. For example, the predication
”thalidomide INHIBITS cyclooxygenase 2” (cox2) would be encoded as follows:

S(thalidomide)+=E(INHIBITS)⊗ E(cox2)× idf(cox2)× gw
S(cox2)+=E(INHIBITSinv)⊗ E(thalidomide)× idf(thalidomide)× gw

idf(C) = log
total predications

predications containing C

gw = log (1 + occurrences of thalidomide INHIBITS cox2)

For the sake of brevity, we will describe future encoding operations without explicitly
referring to idf or gw. This process is repeated across all of the predications in the
database, to generate a set of trained semantic vectors for each concept.

Analogical Retrieval: As the binding process is invertible, it is possible to retrieve
a dual-predicate path connecting two concepts:

Training:

S(multiple myeloma)(MM)+=E(ASSOCIATED WITH)⊗ E(cox2)

S(thalidomide)+=E(INHIBITS)⊗ E(cox2)



Inference:

S(MM)� S(thalidomide) ≈E(ASSOCIATED WITH)⊗ E(cox2)

� (E(INHIBITS)⊗ E(cox2))

≈E(ASSOCIATED WITH)� E(INHIBITS)

⊗ E(cox2)� E(cox2)

≈E(ASSOCIATED WITH)� E(INHIBITS)

These inferred relationships can then be used to find concepts relating to a third con-
cept in the same way that these cue concepts relate to one another. The ability of VSAs
to capture relational similarity has led to their utilization as a means to model aspects
of analogical thought [25, 20, 26]. In previous work, we have shown that this facility
of VSAs can be used to solve proportional analogy problems, by inferring predicate
paths between cue concepts, and using the vector representations of these paths to di-
rect search through predication space [2]. This is accomplished with either the retrieved
path (e.g. E(ASSOCIATED WITH) � E(INHIBITS)) or the noisy approximation
of it derived from the cue concept vectors (e.g. S(MM) � S(thalidomide) ). The vec-
tor representations of these inferred paths can be applied to another concept to direct
search through PSI space to facilitate analogical retrieval as follows:

Training:

S(fluoxetine)+=E(INHIBITS)⊗ E(serotonin)

S(MDD)+=E(ASSOCIATED WITH)⊗ E(serotonin)

Inference:

S(MDD)�(E(ASSOCIATED WITH)� E(INHIBITS))

≈E(ASSOCIATED WITH)⊗ E(serotonin)

� (E(ASSOCIATED WITH)� E(INHIBITS))

≈E(ASSOCIATED WITH)� E(ASSOCIATED WITH)

⊗ E(INHIBITS)⊗ E(serotonin)

≈E(INHIBITS)⊗ E(serotonin) ≈ S(fluoxetine)

4 Multiple Pathways and Quantum Disjunction

In previous work [2], we restricted our study of analogical retrieval to proportional
analogies in which a single predicate path (consisting of one or two predicates) inferred
from a cue pair (e.g. S(MM) � S(thalidomide)) is used to direct search toward con-
cepts connected to a third target concept (e.g. S(MDD) in the same way as the cue pair
relate to one another (e.g. z INHIBITS y, y ASSOCATED WITH x), thereby solving a
proportional analogy problem of the form “what relates to MDD as thalidomide relates
to MM”. However, analogies used in science tend to have more complex structure than



this [27], and drugs tend to be connected to the diseases they treat across networks in-
volving multiple biological entities [3]. Consequently, in this paper we evaluate the abil-
ity of PSI to perform analogical inference and retrieval across multiple predicate paths.
In order to do so, we require a way to measure the similarity between an individual vec-
tor, representing a potential treatment, and a set of vectors representing the permitted
paths from the target disease to this vector. One approach we evaluate in this paper in-
volves comparing candidate therapies to the superposition of a set of inferred predicate
paths. However, as we would like to identify both treatments that are strongly connected
across a single path (such as INHIBITS:ASSOCIATED WITH) and treatments that are
connected across multiple paths (such as INHIBITS:ASSOCIATED WITH; INTER-
ACTS WITH:CAUSES), we also utilize for this purpose the span of vectors, described
in logic as the quantum disjunction operator by Birkhoff and Von Neumann [28] and ap-
plied to information retrieval by Widdows and Peters [16]. This operator measures the
proportion of a vector (in our case a treatment) that can be projected onto a subspace
spanned by a set of component vectors (in our case the predicate paths of interest bound
to the disease of interest). In addition, we introduce a binary vector approximation of
this operator, compared with the continuous implementation in Table 2.

Table 2. Continuous and Binary Implementations of Quantum Disjunction

Implementation Steps Continuous Binary

(1) Component vectors
Real/complex vectors
d O(1000)

Binary vectors
d O(10,000)

(2) Orthogonalize vectors
A - A’s projection on B such
that cos(Â,B) = 0

Introduce/eliminate identical dimen-
sions until HD(Â,B) = d

2
.

(3) Projection Project into subspace Compare with component vectors

(4) Comparison
Cosine of angle between pro-
jection and original vector

Count of overlap with orthogonal-
ized component vectors

5 Evaluation

To evaluate PSI’s ability to mediate analogical inference, we utilize the same set of
22,669,964 predications as in our previous work. From this, we extract predications
involving predicates in the set {AFFECTS; AUGMENTS; CAUSES; DISRUPTS; IN-
HIBITS; PREDISPOSES; STIMULATES; ASSOCIATED WITH; COEXISTS WITH;
INTERACTS WITH}, which were selected on the basis of their potential as justifica-
tion for therapeutic hypotheses. Predications with the predicate TREATS, and any pred-
ications involving a direct relationship between a pharmaceutical substance (UMLS se-
mantic type ”phsu”) and neoplastic process (UMLS semantic type ”neop”, which rep-
resents types of cancer), were excluded from training. In addition, predications involv-
ing a concept with a global frequency greater than or equal to 100,000 were excluded,
as these concepts tend to be general in nature and relatively uninformative. From the re-
maining predications, we generated two PSI spaces, one of which utilized binary vectors



with dimension 32,000, and one of which utilized complex vectors with dimension of
4,000. We will refer to these spaces as BSP and CHRR respectively, in accordance with
the methodology used to generate them. As a test set, we extracted 1,158 types of cancer
(or neoplastic processes: UMLS semantic type ”neop”) with the prerequisite that each
extracted neoplastic process occur in a TREATS relationships with a pharmaceutical
substance represented in our spaces. Inclusion in the set does not, however, guarantee
that a dual-predicate pathway between the cancer concerned and this treatment exists.
We use this set to evaluate analogical retrieval, with the following approaches.

Collective Cues: This is an approach we have pursued in our recent work [29], in which
dual-predicate pathways are inferred from a set of 48,204 known TREATS relationships
between diseases or syndromes (UMLS semantic type “dsyn”) and pharmaceutical sub-
stances (UMLS semantic type “phsu”). For each pair, the dual-predicate path connect-
ing the concepts concerned is inferred by generating the composite cue vector S(dysn)
� S(phsu) and searching through the set of vectors generated by pairwise combination
of the vectors representing individual predicate paths, E(PRED1) � E(PRED2). From
the original set of seventeen predicate vectors (7 directional x 2 = 14 + 3 that commute
= 17), a set of 136 binary ( 17×16

2 ) and a set of 272 complex (17×16) dual-predicate path
vectors were generated. With complex vectors, twice as many paths are generated, as
unlike XOR, the convolution operator is not its own inverse - the order of application of
operators is of importance. Paths connecting pharmaceutical substances and diseases or
syndromes were inferred by retrieving dual-predicate path vectors with a similarity to
the composite cue vector S(dysn) � S(phsu) greater than 1 SD above the mean simi-
larity between 1000 randomly generated vectors of the same vector type and dimension-
ality. The number of times each possible predicate path was retrieved with a similarity
above this threshold to the cue vector was counted, and the five most popular paths for
both binary and complex vector spaces were retained. These paths are illustrated in Ta-
ble 3. Most paths are readily interpretable, as the ASSOCIATED WITH predicate links
diseases to related biological entities, and a drug that interacts with such entities may
be a plausible therapy. Some pathways are more difficult to interpret, and we refer the
interested reader to a related publication [29] concerned primarily with identification,
interpretation and application of such pathways. Of interest for our present purposes,
directionality of the predicate paths is encoded in the complex case only. So complex
pathways are easier to interpret, and binary pathways are less constrained.

Individual Cues: Cues in this case consist of other neoplastic processes drawn from
the set. For each neoplastic process, we draw at random another neoplastic process,
cue neop, and retrieve all of its TREATS relationships from the predication database.
The dual predicate paths are compared to the subspace derived from this set of treat-
ments using the quantum disjunction operator. The components of this subspace (prior
to orthogonalization) consist of the set { S(cue neop)� S(treatment1) ...S(cue neop)
� S(treatmentn) }. Only pathways with an association strength above empirically de-
termined thresholds of 6SD (binary vectors) and 2.5SD (complex vectors) above the
mean pairwise relatedness between 1000 randomly generated vectors of the same type
and dimensionality are retained. Random cue selection is repeated until an example
with more than one above-threshold predicate path is found.



Table 3. Most Popular Predicate Paths in Binary and Complex Space

Binary Count Complex Count

ASSOCIATED WITH
COEXISTS WITH

925
COEXISTS WITH
ASSOCIATED WITH

900

ASSOCIATED WITH
INTERACTS WITH

201
ASSOCIATED WITH
INTERACTS WITH

827

ASSOCIATED WITH
INHIBITS

82
ASSOCIATED WITH
INHIBITS

284

COEXISTS WITH
CAUSES

71
ASSOCIATED WITH
COEXISTS WITH

264

CAUSES-INV
INTERACTS WITH

69
COEXISTS WITH
AFFECTS

248

Application of Pathways: To evaluate the ability of our models to infer (i.e. rediscover)
TREATS relationships pertinent to the types of cancer under evaluation, we generate a
composite cue vector, or subspace, from the vector representing the target neoplastic
process, S(target neop), using three approaches. In the first of these, which we will
term MAX, only the most strongly associated predicate path is utilized. The cue vec-
tor is constructed as S(target neop) � E(predicate path1). In the second, which we
will term SUP, all of the relevant predicate paths (n=5 for composite cues, and n >=
2 for individual cues) are superposed to generate a composite cue vectors constructed
as S(target neop) � E(predicate path1) + S(target neop) � E(predicate path2)
+ .... + S(target neop) � E(predicate pathn). In the third approach, which we will
designate SUB, the same set of vectors used to generate SUP are combined, but rather
than superposing these we generate a subspace from them using the quantum disjunc-
tion operator. For each of the 1,158 target neoplasms, the MAX, SUP and SUB cues are
compared with the semantic vectors for all of the pharmaceutical substances in the PSI
space (n = 16,337) . For each of the three cue types we retrieve all of the pharmaceutical
substances with a similarity to the composite cues above a series of statistically deter-
mined thresholds of association for each of the 1,158 target neoplasms. This approach is
used rather than a fixed number of nearest neighbors, as we anticipate that only a subset
of target neoplasms will be connected in accordance with the dual predicate pathway
cues. With a threshold, concepts connected in this way should be selectively retrieved.

6 Results and Discussion

Figures 1 and 2 show the results of our experiments in binary and complex space re-
spectively. The y axis shows the total number of rediscovered therapeutic relationships
at a given threshold for the set of 1,158 neoplastic processes. The x axis shows the
mean number of candidate therapies retrieved at this threshold, so higher threshold val-
ues correspond to lower values on the x axis. Therefore, one interpretation of the results



25 50 75 100 125 150
0

500

1000

1500

2000

2500

3000

3500

25 50 75 100 125 150
0

500

1000

1500

2000

2500

3000

3500

Fig. 1. Binary Vector Results. Left: Collective Cues. Right: Individual Cues. �=SUB; +=SUP;
N=MAX. Y axis = no. discoveries. X axis = mean no. retrieved.

in Figure 1 (left) is that the binary SUB model recovered approximately two treatments
per disease in the test set while returning on average sixty results per search. However,
this is not to say that treatments were found for every test case. The most productive
models returned treatments in only around one third of the cases, even at the lowest
thresholds tested. It may be the case that this approaches the proportion of this test set
for which TREATS relationships corresponding to dual-predicate paths exist, and that
models incorporating longer paths are required to recover the remaining treatments.
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Fig. 2. Complex Vector Results. Left: Collective Cues. Right: Individual Cues. A. �=SUB;
+=SUP; N=MAX. Y axis = no. discoveries. X axis = mean no. retrieved.

With respect to the collective cues (left), there is a clear pattern of improved recovery for
the models that capture connectedness across multiple pathways, with the quantum dis-
junction based SUB (�) model retrieving more treatments than the SUP (+) model, and
both of these retrieving considerably more than MAX (N). With individual cues (right)
the distinction is less clear, with SUP and, in the binary case, SUB having a slight advan-
tage over MAX at higher thresholds only, and MAX most productive at lower thresh-
olds. This can be explained in part by the ASSOCIATED WITH:INTERACTS WITH



pattern, which captures drug-gene-disease relationships. This was the second-ranked
path for both collective cue sets, and consequently was not considered by MAX in
these cases. However, this predicate path was usually the highest-ranked, and as such
the predominant pathway used by MAX, with individual cues. One interpretation of this
finding is that tight constraints on analogical retrieval are particularly hazardous when
mapping from one domain (diseases other than cancer) to another. Overall, the quantum
disjunction based SUB model with collective cues recovered the most treatments.

7 Conclusion

In this paper, we evaluate the ability of the PSI model to mediate retrieval across mul-
tiple relationships holistically and efficiently, without decomposing the representation
of either the cue or the target. We find that models that facilitate retrieval across multi-
ple predicate paths are better able to recover therapeutic relationships when the scope
of these paths is relatively broad. The best performance was obtained with the quan-
tum disjunction operator using collective cues derived from diseases other than cancer.
As the predicate pathways concerned were not readily retrieved from individual cancer
cues, the advantages of this model can be attributed to the application of relations de-
rived from another domain, the hallmark of scientific analogy [27].
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