QUT ePrints

Surface effects on the dual-mode vibration of <110> silver nanowires with different cross-sections

Zhan, Haifei & Gu, YuanTong (2012) Surface effects on the dual-mode vibration of <110> silver nanowires with different cross-sections. Journal of Physics D : Applied Physics, 45(46).

View at publisher


Dual-mode vibration of nanowires has been reported experimentally through actuation of the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation direction is deviated from the two principal axes of inertia. The predictions of the two first mode natural frequencies by the classical beam model appear underestimated comparing with the MD results, which are found to be enhanced by the discrete model. Particularly, the predictions by the beam theory with the contribution of surface effects are uniformly larger than the classical beam model, which exhibit better agreement with MD results for larger cross-sectional size. However, for ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, for all different cross-sections, the inclusion of surface effects is found to reduce the difference between the two first mode natural frequencies. This trend is observed consistent with MD results. This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
0 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

109 since deposited on 29 Oct 2012
40 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 54364
Item Type: Journal Article
Keywords: dual-mode vibration, nanowire, surface effects, natural frequency, beam theory
DOI: 10.1088/0022-3727/45/46/465304
ISSN: 1361-6463
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Metals and Alloy Materials (091207)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanomaterials (100708)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanoscale Characterisation (100712)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 IOP Publishing Ltd
Deposited On: 29 Oct 2012 16:07
Last Modified: 02 Sep 2014 06:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page