QUT ePrints

Velocity jump processes with proliferation

Treloar, Katrina, Simpson, Matthew, & McCue, Scott W. (2013) Velocity jump processes with proliferation. Journal of Physics A : Mathematical and General, 46(1), pp. 1-17.

View at publisher

Abstract

Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

52 since deposited on 13 Nov 2012
10 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 54767
Item Type: Journal Article
Keywords: velocity jump, proliferation, cell invasion, cellular automata, cancer
DOI: 10.1088/1751-8113/46/1/015003
ISSN: 1751-8121
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Biological Mathematics (010202)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Mathematical Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Past > Schools > Mathematical Sciences
Copyright Owner: Copyright 2013 Institute of Physics.
Deposited On: 14 Nov 2012 08:42
Last Modified: 18 Jan 2013 13:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page