Viable chimaeric viruses confirm the biological importance of sequence specific maize streak virus movement protein and coat protein interactions

Van Der Walt, E., Palmer, K. E., Martin, D. P., & Rybicki, E. P. (2008) Viable chimaeric viruses confirm the biological importance of sequence specific maize streak virus movement protein and coat protein interactions. Virology Journal, 5.

View at publisher

Abstract

Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.

Impact and interest:

10 citations in Scopus
Search Google Scholar™
7 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 54965
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By (since 1996): 9
Export Date: 12 November 2012
Source: Scopus
Art. No.: 61
DOI: 10.1186/1743-422x-5-61
Deposited On: 20 Nov 2012 02:46
Last Modified: 20 Nov 2012 02:57

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page