Bioreactor for blood product production

Doran, Michael R., Aird, Ian Alexander, Marturana, Flavia, Timmins, Nicholas, Atkinson, Kerry, & Nielsen, Lars K. (2012) Bioreactor for blood product production. Cell Transplantation, 21(6), pp. 1235-1244.

View at publisher


The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34+ hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.

Impact and interest:

4 citations in Scopus
Search Google Scholar™
4 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

395 since deposited on 10 Dec 2012
51 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 55404
Item Type: Journal Article
Refereed: Yes
Keywords: Bioreactor, Stem Cells, Neutrophils, Cancer , Transfusion
DOI: 10.3727/096368911X627363
ISSN: 15553892
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomedical Engineering not elsewhere classified (090399)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2012 Cognizant Comm. Corp.
Deposited On: 10 Dec 2012 04:48
Last Modified: 22 Feb 2013 01:21

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page