Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy

Pudlas, Marieke, Brauchle, Eva, Klein, Travis J., Hutmacher, Dietmar W., & Schenke-Layland, Katja (2012) Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy. Journal of biophotonics.

View at publisher

Abstract

Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research. ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

Impact and interest:

16 citations in Scopus
Search Google Scholar™
17 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 55589
Item Type: Journal Article
Refereed: Yes
Additional Information: Early View (Online Version of Record published before inclusion in an issue)
DOI: 10.1002/jbio.201200064
ISSN: 1864-0648
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 12 Dec 2012 22:42
Last Modified: 12 Jun 2013 15:22

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page