Cartilage regeneration using zonal chondrocyte subpopulations : a promising approach or an overcomplicated strategy?

Schuurman, W., Klein, T.J., Dhert, W.J., van Weeren, P.R., Hutmacher, D.W., & Malda, J. (2012) Cartilage regeneration using zonal chondrocyte subpopulations : a promising approach or an overcomplicated strategy? Journal of Tissue Engineering and Regenerative Medicine.

View at publisher


Cartilage defects heal imperfectly and osteoarthritic changes develop frequently as a result. Although the existence of specific behaviours of chondrocytes derived from various depth-related zones in vitro has been known for over 20 years, only a relatively small body of in vitro studies has been performed with zonal chondrocytes and current clinical treatment strategies do not reflect these native depth-dependent (zonal) differences. This is surprising since mimicking the zonal organization of articular cartilage in neo-tissue by the use of zonal chondrocyte subpopulations could enhance the functionality of the graft. Although some research groups including our own have made considerable progress in tailoring culture conditions using specific growth factors and biomechanical loading protocols, we conclude that an optimal regime has not yet been determined. Other unmet challenges include the lack of specific zonal cell sorting protocols and limited amounts of cells harvested per zone. As a result, the engineering of functional tissue has not yet been realized and no long-term in vivo studies using zonal chondrocytes have been described. This paper critically reviews the research performed to date and outlines our view of the potential future significance of zonal chondrocyte populations in regenerative approaches for the treatment of cartilage defects. Secondly, we briefly discuss the capabilities of additive manufacturing technologies that can not only create patient-specific grafts directly from medical imaging data sets but could also more accurately reproduce the complex 3D zonal extracellular matrix architecture using techniques such as hydrogel-based cell printing.

Impact and interest:

9 citations in Scopus
Search Google Scholar™
8 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

249 since deposited on 12 Dec 2012
16 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 55591
Item Type: Journal Article
Refereed: Yes
Keywords: cartilage;zonal;regeneration;bioprinting;additive manufacturing;chondrocytes
DOI: 10.1002/term.1638
ISSN: 1932-7005
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 John Wiley & Sons, Inc
Deposited On: 12 Dec 2012 22:50
Last Modified: 08 Aug 2014 14:22

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page