The rationale for using microscopic units of a donor matrix in cartilage defect repair

Ghanavi, Parisa, Kabiri, Mahboubeh, & Doran, Michael (2012) The rationale for using microscopic units of a donor matrix in cartilage defect repair. Cell and Tissue Research, 347(3), pp. 643-648.

View at publisher


The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.

Impact and interest:

12 citations in Scopus
Search Google Scholar™
9 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 55610
Item Type: Journal Article
Refereed: Yes
Keywords: cartilage repair, chondrocytes, osteoarthritis, matrix
DOI: 10.1007/s00441-012-1323-x
ISSN: 1432-0878
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomedical Engineering not elsewhere classified (090399)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > MEDICAL BIOTECHNOLOGY (100400) > Regenerative Medicine (incl. Stem Cells and Tissue Engineering) (100404)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2012 Springer-Verlag
Deposited On: 14 Dec 2012 02:57
Last Modified: 18 Dec 2012 04:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page