Application of Resilience concept for enhanced management of water supply systems

Amarasinghe, Pradeep, Barnes, Paul, Egodawatta, Prasanna, & Goonetilleke, Ashantha (2012) Application of Resilience concept for enhanced management of water supply systems. In Proceedings of the 2nd International Conference on Sustainable Built Environment, Kandy, Sri Lanka.

View at publisher

Abstract

This paper presents an approach to developing indicators for expressing resilience of a generic water supply system. The system is contextualised as a meta-system consisting of three subsystems to represent the water catchment and reservoir, treatment plant and the distribution system supplying the end-users. The level of final service delivery to end-users is considered as a surrogate measure of systemic resilience. A set of modelled relationships are used to explore relationships between system components when placed under simulated stress. Conceptual system behaviour of specific types of simulated pressure is created for illustration of parameters for indicator development. The approach is based on the hypothesis that an in-depth knowledge of resilience would enable development of decision support system capability which in turn will contribute towards enhanced management of a water supply system. In contrast to conventional water supply system management approaches, a resilience approach facilitates improvement in system efficiency by emphasising awareness of points-of-intervention where system managers can adjust operational control measures across the meta-system (and within subsystems) rather than expansion of the system in entirety in the form of new infrastructure development.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

116 since deposited on 09 Jan 2013
31 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 56159
Item Type: Conference Paper
Refereed: No
Keywords: resilience, critical capacity, climate change, water supply, service delivery
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering Design (090701)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering Modelling (090702)
Divisions: Current > Schools > School of Earth, Environmental & Biological Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Current > Schools > School of Public Health & Social Work
Copyright Owner: Copyright 2012 Please consult the authors.
Deposited On: 09 Jan 2013 22:42
Last Modified: 25 Apr 2013 04:00

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page