Machine prognostics based on health state estimation using SVM

Kim, Hack-Eun, Tan, Andy, Mathew, Joseph, Kim, Eric, & Choi, B.K. (2012) Machine prognostics based on health state estimation using SVM. In Amadi-Echendu, Joe, Brown, Kerry A., Willett, Roger, & Mathew, Joseph (Eds.) Asset condition, information systems and decision models [Engineering Asset Management Review, Volume 2]. Springer, United Kingdom, pp. 169-186.

View at publisher


The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.

Impact and interest:

1 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 56662
Item Type: Book Chapter
DOI: 10.1007/978-1-4471-2924-0_9
ISBN: 978-1-4471-2923-3
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Springer
Deposited On: 24 Jan 2013 02:30
Last Modified: 10 Oct 2015 14:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page