On the commonly accepted assumptions regarding observed motor vehicle crash counts at transport system locations

Washington, Simon & Haque, Md. Mazharul (2013) On the commonly accepted assumptions regarding observed motor vehicle crash counts at transport system locations. In 92nd Annual Meeting of Transportation Research Board (TRB), 13-17 January 2013, Washington DC.

View at publisher


Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.)

The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention.

This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

120 since deposited on 05 Feb 2013
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 56877
Item Type: Conference Paper
Refereed: Yes
Keywords: Negative binomial regression, motor vehicle crashes, crash modelling, mixture models, behaviour, road safety, latent variables
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > STATISTICS (010400) > Applied Statistics (010401)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Transport Engineering (090507)
Divisions: Current > Research Centres > Centre for Accident Research & Road Safety - Qld (CARRS-Q)
Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 [please consult the author]
Deposited On: 05 Feb 2013 22:46
Last Modified: 25 Feb 2014 05:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page