QUT ePrints

Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration

Xiao, Yin, Young, William G., Bartold, P. Mark, & Hasse, Helen (2004) Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration. Cell Transplantation, 13(1), pp. 15-25.

Abstract

The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a "connective tissue"-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of immunodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Atu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.

Impact and interest:

31 citations in Scopus
Search Google Scholar™
31 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 5710
Item Type: Journal Article
Additional Information: For more information, please refer to the journal’s website (see hypertext link) or contact the author. Author contact details: yin.xiao@qut.edu.au
Additional URLs:
Keywords: Extracellular matrix, Mineralized matrix, Osteoblasts, Bone formation
ISSN: 0963-6897
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2004 Cognizant Communication Corporate
Deposited On: 25 Jul 2007
Last Modified: 29 Feb 2012 23:04

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page