Biomechanical performance of polycaprolactone (PCL)-based scaffold with rhBMP-2 in a sheep thoracic spine fusion model

Yong, Mostyn, Brooker, Beau, Labrom, Robert D., Askin, Geoffrey N., Hutmacher, Dietmar, & Adam, Clayton J. (2012) Biomechanical performance of polycaprolactone (PCL)-based scaffold with rhBMP-2 in a sheep thoracic spine fusion model. In IHBI Inspires Postgraduate Student Conference, 22-23 November 2012, Gold Coast, QLD.


Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. Resulting spine deformities include progressive coronal curvature, hypokyphosis, or frank lordosis in the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Problems with bone graft harvest site morbidity as well as limited bone availability have led to the search for bone graft substitutes. Recently, a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone (PCL) has been developed for bone regeneration at load bearing sites. Combined with recombinant human bone morphogenic protein–2 (rhBMP-2), this has been shown to be successful in acting as a bone graft substitute in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft. This in vivo sheep study intends to evaluate the suitability of a custom designed medical grade PCL scaffold in combination with rhBMP-2 as a bone graft substitute in the setting of mini–thoracotomy surgery as a platform for ongoing research to benefit patients with adolescent idiopathic scoliosis.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

85 since deposited on 19 Feb 2013
1 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 57395
Item Type: Conference Item (Poster)
Refereed: Yes
Keywords: resorbable scaffold, adolescent idiopathic scoliosis, sheep thoracic spine, ovine spine model, BMP-2
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomechanical Engineering (090302)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300) > Orthopaedics (110314)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 The Authors
Deposited On: 19 Feb 2013 22:39
Last Modified: 22 May 2017 08:28

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page