A paper published by the first author in this journal almost 25 years ago1 on the assessment of ‘senile macular degeneration’ reviewed the standard tests of clinical vision according to three criteria:

1. Were the tests effective in detection and diagnosis of the condition?
2. Were they adequate for monitoring the progression of the disease?
3. Could the tests predict patients’ functional disabilities and indicate their rehabilitation needs?

It is timely to examine what else has changed apart from the name and to ask again those same questions about our assessment of vision in age-related maculopathy (ARM) and age-related macular degeneration (AMD) as the early and late forms of the condition are now classified.2

In 1981, Kitchin1 predicted that there would be many patients with ARM in the future—little did we realise that the condition would be approaching epidemic proportions now. Despite a better understanding of the risk factors and the evolution of some modestly effective treatments,3,4 AMD remains the leading cause of visual impairment among white persons in Australia and other developed countries.5–10 The incidence and prevalence of AMD is increasing at a rate faster than can be explained by the ageing population.11

The Melbourne Visual Impairment Project12 found the overall five-year incidence of ARM (soft distinct or indistinct drusen and/or pigmentary abnormalities) for Australians aged 40 years and older to be 17.5 per cent (95 per cent confidence interval, 8.7 to 26.0 per cent). Their findings are higher than those from the Blue Mountains Eye Study13 because of different definitions for ARM and different age ranges in the study populations. However, both Australian studies indicate that the highest incidence rate is in persons aged 70 years and older; between one in five and one in three people aged 70 years and older will develop ARM over a five-year period and the disease will progress to a more severe form after 80 years of age.12,13 Thus, there will be between 370,000 (one in five) and 620,000 (one in three) new cases of ARM over the next five years among older Australians (estimated from Australian Bureau of Statistics 2004 population figures—AusStats: 3201.0 Population by Age and Sex, Australian States and...
The economic and social impacts of this major public health issue are enormous.14-17 Hopley, Salkeld and Mitchell15 estimated that the cost of AMD to the health system in Australia exceeds $AUD290 million per year. Bonastre and colleagues15 similarly estimated the annual budget impact of AMD in four European countries to be between 51.3 and 101.1 million euros ($AUD85 to 168 million). The impact of AMD on activities of daily living, self-care, emotional well-being and overall quality of life can be profound and appears to be directly related to the severity of the condition.16-23

Treatment of neovascular AMD by photodynamic therapy for subfoveal lesions (the majority) or thermal laser photocoagulation for extraretinal lesions may stabilise or occasionally improve visual function14,24 and quality of life20,27 but only small numbers of AMD patients can actually benefit from these treatments.24,28 Given that there are limited options for treatment of AMD, early detection of the disease and prevention of progression are most important public health goals. Hopley and co-workers29 determined that screening people aged 55 years and older for early ARM and then treating them with zinc and antioxidants could be considered cost-effective and these were highly cost-effective compared with no screening or treatment. Zinc and antioxidants have been shown to be effective for slowing the progression of visual loss in patients with large, soft drusen, unilateral moderate AMD or advanced AMD in the fellow eye.29 Thus, the roles of the optometrist in both the early detection and diagnosis of ARM and the management of the visual impairment due to AMD are paramount.

PURPOSE OF ASSESSMENT OF VISION

The purpose of any visual assessment depends on the patient and the current visual status. The purpose may be:
1. to detect visual loss
2. to diagnose the cause of a visual loss
3. to monitor progressive visual loss, and/or
4. to predict functional impairment and inform vision rehabilitation.

The important, initial purpose is to determine if any visual loss is physiological, that is, due to refractive error or normal ageing, or pathological and if the latter, to detect the disease as early as possible and to determine appropriate treatment and/or referral.

The subjective tests of vision reviewed in 1981 by Kitchin1 were: visual acuity (VA), visual fields, colour discrimination, contrast sensitivity and illuminance effects. Of course, the visual functions of the eye have not changed, so most of the tests of vision available today still fall under those general headings but the tools at our disposal have greatly increased in number and sensitivity.

We now know that our conventional, subjective clinical tests of vision, administered under optimal lighting and contrast conditions, detect neither ‘normal’ age-related losses in visual function13-15 nor the transition from normal ageing to early ARM. Similarly, by the time examination of the retina by ophthalmoscopy or fluorescein angiography reveals visible abnormalities, visual function is already compromised.34 In addition objective measures of cone- and rod-mediated functions in ARM have shown that impairment exceeds the funduscopically affected area.35-37 Fine4 commented that ‘Remarkably, psychophysicists now can detect subtle disturbances in macular function before there are visible macular abnormalities’. This is an important and challenging role for optometrists: to detect changes in retinal function before ophthalmoscopic changes are apparent and before the traditional measures of vision (for example, high contrast VA) show impairment.

DETECTION AND DIAGNOSIS OF ARM

The fact that retinal function is compromised in ARM before high contrast VA is reduced is not surprising, as we know now that the disease starts parafoveally,36-41 that rods are affected before cones in early ARM42,43 and that the distributions of soft drusen, depigmentation of the retinal pigment epithelium and early ARM all increase at parafoveal locations.44 A wide variety of studies has investigated changes in visual functions with normal ageing, ARM and AMD, under photopic and scotopic conditions. Table 1 lists the functions affected by ARM and some of the relevant publications (this list is by no means exhaustive).

Many of the psychophysical functions listed in Table 1, assessing both cone and rod function, can be impaired before high contrast VA deteriorates. However, some of these tests are not clinically available, require expensive equipment, are not standardised or validated, do not have normative data available and/or are time-consuming to administer. Ideally, for efficient and effective screening and diagnostic purposes, optometrists need a small battery of practical, validated tests that can detect and monitor visual loss in early ARM. As yet, there is no such proven battery of tests but based on research over the past 20 years, a range of subjective vision tests has been reviewed and various recommendations have been made for the detection of early age-related visual changes, to monitor vision in early ARM and/or assess visual loss in AMD.33,40-45,52,56,61,63,89,95-97

Multiple tests of visual functions are required to detect early dysfunction because of physiological and pathological variations among patients and the variants of the condition.63,96 Therefore, we propose a set of clinically applicable subjective tests, which have been most commonly recommended3,15,40,41,52,56,61,63,89,96,97 for detecting early changes in visual (retinal) function and have been repeatedly shown to be impaired in ARM. We recommend two measures of steady state visual functions (SKILL VA or low contrast VA and desaturated D15) and two tests of adaptation dynamics (flicker perimetry and glare recovery) for routine clinical use. Two additional tests (dark adaptation and reading rate) are suggested for possible use. Some or all of the proposed tests should be applied to all patients 60 years and older to determine individual baseline values and thereby identify and monitor those patients at risk of subsequent visual problems.33,89,96 Of course, these tests should be
predictors of a loss of high contrast VA of low contrast spatial vision were stronger than those in the same observers with habitual high contrast VA of 6/12 or better at baseline and 27 healthy control eyes. The difference was not specific to ARM, a significant proportion of their participants had diagnoses of early ARM at baseline. In our laboratory, we have found significantly reduced SKILL scores in people with early ARM (and high contrast VA of 6/12 or better) compared to an age-matched control group.33 The SKILL card provides a quick, robust and reliable measure of the effect of reduced luminance and contrast on VA,104 which appears to be useful for detecting sub-clinical pathology.33,99 Practitioners should establish normal values in their own consulting rooms for individual patients through repeat measures.98 The test is available from The Smith-Kettlewell Eye Research Institute; details on how to order it are available at their website http://www.ski.org/Rehab/JABrabyn_lab/skistudy.html.

LOW CONTRAST VISUAL ACUITY

An alternative to the SKILL test is a more conventional measure of low contrast (high luminance) visual acuity. There have been conflicting reports on the usefulness of low contrast VA for diagnosing early ARM.40,58,86,88 Kleiner and colleagues48 reported that low contrast VA was significantly reduced in a group of 52 eyes with drusen and pigmented changes but normal high contrast VA, compared to 27 healthy control eyes. The difference between the groups increased with increasing drusen severity. Lovie-Kitchin,48 Cheng and Vingrys40 and Abadi and Pantazidou88 have concluded that while low contrast VA was reduced in ARM, its measurement (reflectance and contrast approximately eight and 14 per cent, respectively), while the reverse side has a conventional high-contrast, black-on-white letter chart.100 The SKILL score is the acuity loss (number of letters) between the light and dark sides of the card and this varies with age, particularly after age 50 years. For 20-year-olds the SKILL score was a mean of 15 letters (three lines) and for 80-year-old participants (with high contrast VA of 6/9.5 or better), 25 letters (five lines).33,100 Schneck and associates89 showed that reduced low luminance VA (increased SKILL score) at baseline increased the likelihood of future visual loss by three times. While their findings were not specific to ARM, a significant proportion of their participants had diagnoses of early ARM at baseline. In our laboratory, we have found significantly reduced SKILL scores in people with early ARM (and high contrast VA of 6/12 or better) compared to an age-matched control group.33 The SKILL card provides a quick, robust and reliable measure of the effect of reduced luminance and contrast on VA,104 which appears to be useful for detecting sub-clinical pathology.33,99 Practitioners should establish normal values in their own consulting rooms for individual patients through repeat measures.98 The test is available from The Smith-Kettlewell Eye Research Institute; details on how to order it are available at their website http://www.ski.org/Rehab/JABrabyn_lab/skistudy.html.

LOW CONTRAST VISUAL ACUITY

An alternative to the SKILL test is a more conventional measure of low contrast (high luminance) visual acuity. There have been conflicting reports on the usefulness of low contrast VA for diagnosing early ARM.40,58,86,88 Kleiner and colleagues48 reported that low contrast VA was significantly reduced in a group of 52 eyes with drusen and pigmented changes but normal high contrast VA, compared to 27 healthy control eyes. The difference between the groups increased with increasing drusen severity. Lovie-Kitchin,48 Cheng and Vingrys40 and Abadi and Pantazidou88 have concluded that while low contrast VA was reduced in ARM, its measurement

<table>
<thead>
<tr>
<th>Visual function</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flicker sensitivity</td>
<td>Mayer et al 1992a, b, and c 1994,79,82,83 Phipps et al 2004,84</td>
</tr>
<tr>
<td>Short wavelength perimetry</td>
<td>Remky et al 2001, 2005,85</td>
</tr>
</tbody>
</table>

Table 1. Subjective visual function tests investigated in ARM

used in conjunction with conventional assessments including case history, direct and indirect ophthalmoscopy and high contrast VA.

Steady state thresholds tests

LOW LUMINANCE/ LOW CONTRAST VA

The value of a number of ‘non-standard, yet clinically-practical’89 tests of visual function for predicting future loss of visual acuity has been examined in the longitudinal phase of the SKI (Smith Kettlewell Institute) study involving a large sample (n = 537) of older adults (58 years and older) with good initial visual acuity.31,33,89,99 Schneck and associates89 acknowledged that other measures of low contrast spatial vision gave similar results. The SKILL card consists of two near letter charts designed on the Bailey-Lovie principles,101 one side with a chart of black letters on a dark grey background

Clinical and Experimental Optometry 88.5 September 2005
gave no additional information over that provided by high contrast VA for those with ARM. In all of these studies, including that of Kleiner and colleagues, the ARM subjects already had slightly reduced high contrast VA, thus the conclusion is logical. However, reduced low contrast VA before high contrast VA loss may indicate early macular dysfunction. Greeves and Lovie-Kitchin independently found that a pass-fail criterion of 6/12 for low contrast VA distinguished between subjects with early ARM and age-matched subjects with normal retinas. This provides a useful guide for practitioners in monitoring the low contrast VA of their older patients.

The findings of Snchez and associates indicated that a measure of low contrast VA would be as good as the SKILL score at predicting future visual loss. Again, there are significant changes in low contrast VA with age, particularly for observers older than 70 years, although the rate of change with age is not as great as for the SKILL score. This suggests that a significant change in low contrast VA over repeated visits for an individual is more likely due to disease than age. Again, the practitioner would need to establish normal baseline low contrast VA for each patient to monitor for this change. High and low contrast Bailey-Lovie charts for use at a three-metre test distance are available from the National Vision Research Institute of Australia http://www.optometry.unimelb.edu.au/nvri/equipment.html.

COLOUR VISION
ARM is characterised by a reduction in short-wavelength cone (S-cone) sensitivity, which probably is reflected clinically as a tritan defect on the Panel D-15 and/or desaturated D-15 tests, depending on the stage of the condition. Reduction in S-cone function discriminates between age-matched observers and eyes with good acuity (6/7.5 or better) but a fellow eye with AMD and is associated with progression to exudative AMD. Simi-
functions assessed, glare recovery showed one of the greatest changes with increasing age. While glare recovery was significantly associated with future VA loss, it was no better than increasing age itself at predicting future loss of high contrast VA.89

In contrast, the results of many studies40,49,63,72,97 indicate that glare recovery is a valuable tool for detecting early adaptational changes in ARM. The results of Collins and Brown42,43 suggest that assessment of parafoveal glare recovery detects dysfunction in ARM earlier than do tests of foveal adaptation. Thus, a clinical test of parafoveal glare recovery needs to be developed.40 In the absence of a standardised, commercially available test (to the knowledge of the authors) or a validated procedure, further development and longitudinal clinical investigations are needed to determine the effectiveness of glare recovery for discriminating between normal age-related changes and early ARM before fundal changes are apparent and high contrast VA is reduced.

DARK ADAPTATION
Several studies have shown that dark adaptation in the central and peripheral retina is compromised in ARM and AMD57,63,95,96,119 and in eyes at risk of developing AMD.52,94 Evidence that rods are affected first in early ARM42,45 would suggest that dark adaptation should be performed routinely on older patients. However, given its time-consuming nature, investigations on its efficacy and cost-effectiveness at discriminating between normal age-related loss and early ARM would be needed before we would recommend it for routine clinical use.

Additional possible assessments

READING RATE
Recent research and the clinical experience of the first author suggest that a reduction in reading rate is often noticeable among older patients before significant visual loss.35,110-112 Lott and co-workers112 found that reading ability declined with age among participants aged 58 years and older with good high contrast VA; this decline reflected reduced reading rate but not accuracy. When measures of vision, some of which included significant cognitive demand, were taken into account, age was no longer a significant predictor of reading ability. This agreed with the findings of the Salisbury Eye Evaluation (SEE) study, in which measures of vision and health but not age predicted self-reported visual task difficulties.113 Thus, we speculate that while reduced reading rate may reflect early cognitive changes in some older people, it may also relate to the first symptoms of visual impairment and would be worth assessing in older patients as a possible means of detecting ARM. As ARM progresses, it is important to monitor reading rate with respect to future low vision management, as it becomes severely impaired with visual loss in AMD (see below).

Reading rate can be measured directly with a stop-watch for decreasing print sizes using either lines of unconnected words, for example with Bailey-Lovie word charts,114 or short sentences, such as with the MNRead chart115 or at least some assessment of fluency can be made by listening to the patient read print of decreasing sizes.116 As the patient approaches threshold print size (normally three point (N3) print at 40 cm when best corrected), their reading rate will slow. It is valuable to record the print size one line above the size at which the first noticeable decrease in reading rate is heard. That print size, the smallest giving maximum reading rate, is referred to as the Critical Print Size117 and on average is three lines above threshold, although this varies among older observers with and without visual loss.16,118

CONTRAST SENSITIVITY
Tests of contrast sensitivity have often been investigated and/or recommended for the evaluation of visual performance in ARM.52,53,55,63,119 While these studies have found reduced contrast sensitivity in ARM, in the opinion of the authors, its value for early detection of ARM has not been established.119 A number of easily administered chart-based tests of contrast sensitivity have been developed120-122 but these are not used commonly in clinical practice. Schneck and associates89 found the Pelli-Robson letter contrast sensitivity test123 was not as good as the SKILL score or low contrast VA for predicting future visual loss, so we do not recommend a test of contrast sensitivity for routine clinical use.

AMSLER GRID
The Amsler grid does not provide reliable or precise, quantifiable measures of visual field defects and is not recommended for clinical, diagnostic use.123 Cheng and Vingrys89 found that a low contrast (18 per cent) Amsler grid was more sensitive than the conventional Amsler grid for detecting central visual field defects in early ARM but this is not commercially available. The take-home Amsler grid is a simple and easy method for older patients to self-monitor their visual status and has been commonly recommended. Its efficacy for the early detection of patients who will benefit from treatment for exudative AMD is limited124 but if it detects even one person with early central visual loss that is treatable or who will benefit from more regular vision care, it is worth recommending.

The steady state visual function tests we have recommended above are essentially low contrast tests that detect subtle subclinical visual loss that conventional VA measures do not detect. Older persons with good high contrast VA who score at the low end of the range on SKILL VA or low contrast VA have a nearly 50 per cent chance of significant VA loss in the next four to five years.33,89 To our knowledge, the effectiveness of the desaturated D-15 and reading rate at predicting subsequent visual loss has not been examined in longitudinal studies. Tests of glare recovery and flicker perimetry are likely to prove valuable for detecting early macular dysfunction and ideally a test of dark adaptation should be performed given that rods are first affected in ARM.42,45 The battery of clinical tests recommended above agrees well with the recommendations of Phipps, Guymer and Vingrys45 to include combinations of cone-mediated tests of adaptation, temporal, spatial and colour functions, which for their small sample of subjects correctly identified 88 per cent of ARM eyes (with early fundal changes), while in their study, a test of glare recovery plus one other test correctly classified
75 per cent of ARM eyes.

The routine use of these tests of vision also gives a better understanding to both the optometrist and the older patients of the visual impairment experienced in real world conditions of low contrast, low luminance or glare. 31,33,80

Until clinical trials prove the efficacy of a battery of tests such as we and others have proposed and the effective use of preventative treatments in patients with early (sub-clinical) visual loss, the role of the optometrist is to monitor closely those patients who are at risk of ARM. We suggest that patients with impaired function on one or more of the tests we have recommended, in the absence of funduscopic changes, should be assessed every 12 months. Patients with AMD in the fellow eye or a family history of AMD, smokers and those with other cardiovascular risk factors such as hypertension or diabetes should also be monitored closely. 125-128

While antioxidants and zinc have been shown to be effective at slowing the progression of visual loss in patients with large, soft drusen, unilateral moderate AMD or advanced AMD in the fellow eye, a preventative use has not been proven. 30 Similarly, with our current knowledge of the disease, referral for ophthalmological investigation and intervention (fluorescein angiography, laser therapies et cetera) is not indicated until there are visible retinal changes at the earliest. The future goal is the prevention of the development of ARM. Whether this can be achieved by a healthy diet combined with antioxidants and/or a stricter medical treatment regime, similar to that for general cardiovascular diseases, for patients identified to be at risk by these more sensitive visual function tests still needs to be investigated.

MONITORING PROGRESSION OF VISUAL LOSS IN AMD AND PREDICTING ACTIVITY LIMITATIONS

For the majority of patients with ARM, the condition will progress to AMD which, especially for the atrophic form, will not be amenable to medical or surgical treatment. As indicated above, only a small proportion of those patients with the neovascular form of AMD will receive laser therapy, which may stabilise vision 14,15 but most will experience little or no improvement in vision. Hopefully the optometric care of these patients is a continuum over many years, from the time of normal vision, to the first sub-clinical dysfunction, to symptoms and fundal changes (ARM) and then, unfortunately for many, to progressive visual loss (AMD). The role of the optometrist becomes one of monitoring visual loss and gradually introducing low vision care, especially magnification and advice on lighting and contrast, in conjunction with other vision rehabilitation professionals. To monitor progressive visual loss in AMD and to determine activity limitations and the need for vision rehabilitation, more conventional subjective tests of vision are used than those proposed above.

High contrast distance visual acuity

The Bailey-Lovie letter chart 101 has become accepted as the standard for VA measurements in clinical research, 129 although perhaps not in clinical practice. 150 Practitioners should be encouraged to use charts of this design to improve the precision of VA measurements for all patients but especially patients with progressive visual loss. Brown and Yap 131 showed that for any individual patient a difference in visual acuity between right and left eyes, or a loss of VA, of greater than five letters (one line) is indicative of pathology. When measuring VA, the patients should be encouraged to guess as they approach their limit of resolution to ensure that a threshold measurement is taken. Scoring VA letter-by-letter doubles the sensitivity of the VA test to detect changes in vision compared to scoring row-by-row. 132 If VA is reduced in AMD, the position of letters missed gives an indication of the presence and position of scotomas. 1,84,95

Distance VA is not a strong predictor of everyday performance of people with AMD on tasks such as mobility 133,134 or face recognition 135 but it can be used as the basis for advice for some everyday tasks. The easiest way to compensate for reduced distance VA is to recommend a reduction in the viewing distance for the task (proximal magnification), if it is safe to do so. For example, if a person with AMD reports difficulty seeing the television, they should be reassured that a closer seating position is safe and they should sit to the side of the worse eye. The recommended viewing distance can be determined from the VA, remembering that the linear size of detail that can be resolved is proportional to the viewing distance. For example, a person who reads the 60 m line on the VA chart at 6.0 metres can be expected to resolve detail equivalent to the 30 m line from 3.0 metres, the 15 metre line from 1.5 m and so on. From this, a 1.5 metre or 1.0 metre viewing distance might be recommended for television viewing for the AMD patient with a distance VA of 6/60. The linear extent of any scotoma is also reduced with a decreased viewing distance. 144

Near (reading) visual acuity and reading rate

As indicated above, one of the first signs or symptoms of visual loss in ARM may be a reduction in reading rate. Near VA is a good predictor of reading rate. 112,114,156-158 As ARM progresses to AMD, both near VA and reading rate will reduce and both should be assessed. To detect the early reduction in near VA, the patient must be encouraged to read to the limit of resolution and the optometrist must use a reading acuity chart (preferably with words or text, rather than letters) with print small enough to determine threshold size. The smallest print size read, the clearest viewing distance and the current near addition should be recorded. If the near addition is not equal to the dioptric equivalent of the clearest distance, this may indicate a need for refractive change, for example, a clearest distance of 25 cm with a ±2.50 D addition suggests that either the distance prescription is excess plus or the patient may be tolerating blur to give an enlarged retinal image with the closer distance (proximal magnification). If near VA is a lot worse than distance VA, a scotoma is...
probably impeding near vision.111

At first, a reduction in near VA and reading rate may be compensated by an increase in illumination (see below) but an increase in the near addition will probably be the start of vision rehabilitation for most patients with AMD. With progression of AMD, higher levels of magnification will be needed for reading tasks. Recommended procedures for determining the magnification, which needs to be high enough to provide sufficient acuity reserve to enable a useable reading rate, have been described previously.110,116,139

Reading performance with AMD is impeded by more than reduced VA; the visual field loss also has a significant impact.114,136 Magnification can compensate for reduced VA and reading rate but not for the effects of a scotoma.140 The position and size of the scotoma and the adaptation to eccentric viewing146 mean that maximum achievable reading rate with magnification (using large print, optical or closed-circuit television systems) for people with AMD is usually between 30 and 100 words per minute.118,136 Thus, with moderate or severe AMD, patients will never return to their ‘normal’ (pre-AMD) reading fluency using any magnification devices. Extensive training may improve some patients’ reading rates, although well-controlled studies have not proven the efficacy of such training programs.141

In our laboratory, we have found that provided sufficient magnification is prescribed, patients with AMD using illuminated stand magnifiers do not need extensive training to achieve their maximum, albeit slow, reading rate.142 Despite the relatively slow reading rate achievable with central visual loss, many patients are satisfied with this for short term, ‘survival’ tasks. Other non-visual ways of accessing information can be used for work or recreational tasks if necessary.143,144

Visual field assessment

In 1981, the first author suggested using a tangent screen to assess the visual field defect in AMD.1 For the purposes of vision rehabilitation that instrument is still appropriate but the recommended method of assessment has been modified.145

Automated static perimetry can be used in early or moderate AMD16,147 but visual field assessment is not necessary or practical for monitoring visual loss in AMD. Once a diagnosis of AMD is confirmed, the main purpose of visual field assessment is to determine the size and position of any scotoma, as these impact on tasks such as reading and mobility; these characteristics of the scotoma can be readily assessed with a tangent screen. Binocular visual field loss is the strongest predictor of mobility performance in low vision patients with AMD.153,134 Thus, for determining the impact on mobility, visual fields should be assessed binocularly. Similarly, the presence, size and position of a central scotoma are very strong predictors of reading performance in AMD.117,118 As most patients with AMD read monocularly, the central visual field should be assessed monocularly to determine the effect on reading performance.145

Most patients with well-established AMD develop one (or more) parafoveal preferred retinal locus (PRL).148,149 As indicated above, the position, size and stability of this eccentric viewing position have significant effects on reading in particular.146 Using a one-metre tangent screen and instructing patients with AMD to fixate (eccentrically) so that they can clearly see a large fixation target will enable most patients to maintain stable fixation. Threshold assessment of the central field is not needed, so a large test target, for example, 10 or 20 mm can be used to plot the size and position of the scotoma.145 If the scotoma is positioned to the left and/or above fixation, that is, the right and lower visual fields are open, reading (in English) will not be severely impeded by the scotoma. If the right field is not open, eccentric viewing training may be needed for reading but many patients spontaneously learn to position their scotoma appropriately for the task. For mobility also, it is desirable that fixation is below any binocular scotoma so that the inferior field is open.154 Patients often adopt different eccentric fixation positions for these different tasks or for different conditions.153

Effects of increased illumination

Adaptation is abnormal in ARM and AMD. Knowing this, from the functional point of view the optometrist can advise patients on appropriate lighting conditions for safety and maximum visual performance. Various studies have shown that the effect of varying illumination differs among individuals with AMD, especially for reading.84,152,155 Bowers, Meek and Stewart155 recommended that near VA and reading rate be assessed at low (5 to 20 lux), medium (100 to 300 lux) and high (2,000 to 5,000 lux) illuminances, using dim room lighting, normal room lighting and a reading lamp 20 cm or less from the reading material, respectively. Using these results, optometrists can advise on appropriate, adjustable lighting for reading and writing, positioned to the side away from the writing hand, to avoid glare and shadows. Some patients with AMD show best VA and reading performance at very high light levels, while a few show marked reductions in VA and reading rate at moderate and high illuminances,84,153,155 indicating that each patient’s own response to varying illumination needs to be assessed.

Contrast sensitivity

In many studies, contrast sensitivity has been shown to be useful for monitoring the progression of visual loss in AMD and its treatment156-158 and as a predictor of performance on many everyday activities. In AMD, contrast sensitivity is a strong predictor of reading performance,159 face recognition,155 mobility153,154 and other visual discrimination tasks.160 As indicated above, contrast sensitivity can be assessed using a number of easily administered chart-based tests120-122 but they are not commonly available in clinical practice. Low contrast visual acuity is strongly correlated with contrast sensitivity measures87,96 and while this does not mean that these measures should replace contrast sensitivity measures,89 for the purposes of monitoring visual loss and predicting difficulties with daily activities, the SKILL or low contrast VA test would be satisfactory and in fact, for predicting performance on tasks such as reading may be preferred.157

When contrast sensitivity is reduced,
there are limited strategies to improve performance. Optimum lighting (see above), minimising glare and reversing or increasing print contrast, commonly using video devices such as closed-circuit television or computer based devices, are the only interventions for enhancing contrast. If contrast sensitivity is severely impaired, only interventions for enhancing contrast. Considerable research has shown that the results of these tests are useful for predicting limitations of patients’ activity and indicating their rehabilitative needs, although case history will always be the most important assessment for this purpose.

Early detection of ARM and referral for medical or surgical treatment if indicated, together with prompt implementation of optometric vision rehabilitation will help to minimise the visual disability experienced by many people with AMD. Optometrists have a crucial role in assessing visual function and providing appropriate advice and management, over the whole range of visual performance in patients with ARM and AMD, from prior to the first symptoms and retinal signs to the time when all useable central vision may be lost. Appropriate use of available practical, subjective, clinical tools can improve greatly our management and care of patients with macular disease.

REFERENCES
20. DeCarlo DK, Scilley K, Wells J, Owsley C.

CONCLUSIONS
There are now more effective subjective tests of vision available for detecting and diagnosing ARM than those available 25 years ago. We recommend a battery of clinical tests comprising SKILL VA or low contrast VA, desaturated D-15 colour vision assessment, ficker perimeter, glare recovery and dark adaptation if possible, for the detection and diagnosis of ARM. These should be administered, in conjunction with conventional assessments of case history, ophthalmoscopy and high contrast VA, to all patients aged 60 years and over and certainly anyone exhibiting risk factors for AMD. The more conventional subjective tests of distance VA, near VA, reading rate, central visual field assessment and the effects of increased illuminance, with some modifications to the methods of assessment, are still adequate for monitoring the progression of ARM and AMD. Multidisciplinary vision rehabilitation
Recent well-controlled studies have not been able to prove conclusively the value of multidisciplinary vision rehabilitation services compared to other low vision services but there is good evidence that optometric vision rehabilitation is effective in improving task performance and quality of life. The best battery of clinical tests to predict functional abilities with low vision on a range of everyday tasks has not yet been determined, although there have been attempts to do so. Meanwhile, use of the results of the subjective tests of vision described above will enable optometrists to respond to recent calls to improve the management of AMD patients by regularly and accurately assessing their vision using the (mostly) standardised and validated clinical measures described above. The results can be used to give appropriate advice and/or optometric low vision care to improve the functional ability and quality of life of patients with AMD.

Clinical and Experimental Optometry 88.5 September 2005 299

60. Frennesson C, Nilsson U, Nilsson SE. Colour contrast sensitivity in patients with soft drusen, an early stage of ARM. *Doc
Assessment of ARM Lovie-Kitchin and Feigl

105. Wood J, Swann P, Stavré E. Visual fields

Assessment of ARM Lovie-Kitchin and Feigl

165. McCabe P, Nason F, Demers Turco P, Friedman D, Seddon JM. Evaluating the effectiveness of a vision rehabilitation in-

169. Dutton GN. Age-related macular degeneration: could we improve the services we offer? Br J Ophthalmol 2000; 84: 945-946.

Corresponding author:
Associate Professor Jan Lovie-Kitchin
Queensland University of Technology
Faculty of Health
Victoria Park Road
Kelvin Grove QLD 4059
AUSTRALIA
E-mail: j.lovie-kitchin@qut.edu.au