Average travel time estimations for urban routes that consider exit turning movements

Bhaskar, Ashish, Chung, Edward, & Dumont, André-Gilles (2012) Average travel time estimations for urban routes that consider exit turning movements. Transportation Research Record Journal of the Transportation Research Board, 2308(1), pp. 47-60.

View at publisher


This paper presents a methodology for real-time estimation of exit movement-specific average travel time on urban routes by integrating real-time cumulative plots, probe vehicles, and historic cumulative plots. Two approaches, component based and extreme based, are discussed for route travel time estimation. The methodology is tested with simulation and is validated with real data from Lucerne, Switzerland, that demonstrate its potential for accurate estimation. Both approaches provide similar results. The component-based approach is more reliable, with a greater chance of obtaining a probe vehicle in each interval, although additional data from each component is required. The extreme-based approach is simple and requires only data from upstream and downstream of the route, but the chances of obtaining a probe that traverses the entire route might be low. The performance of the methodology is also compared with a probe-only method. The proposed methodology requires only a few probes for accurate estimation; the probe-only method requires significantly more probes.

Impact and interest:

9 citations in Scopus
Search Google Scholar™
6 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

101 since deposited on 18 Mar 2013
9 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 58305
Item Type: Journal Article
Refereed: Yes
DOI: 10.3141/2308-06
ISSN: 0361-1981
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Transport Engineering (090507)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Current > Research Centres > Smart Transport Research Centre
Copyright Owner: Copyright 2012 Transportation Research Board
Deposited On: 18 Mar 2013 02:52
Last Modified: 20 Mar 2013 04:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page