An in-vitro 3-D cell culture model for studying pathomechanisms in AMD

Shadforth, Audra, Harkin, Damien G., Chirila, Traian, Weiss, Anthony, Hutmacher, Dietmar, & Feigl, Beatrix (2013) An in-vitro 3-D cell culture model for studying pathomechanisms in AMD. Investigative Ophthalmology and Visual Science, 54, p. 314.

View at publisher (open access)



To develop a novel 3-D cell culture model with the view to studying the pathomechanisms underlying the development of age-related macular degeneration (AMD). Our central hypothesis is that the silk structural protein fibroin used in conjunction with cultured human cells can be used to mimic the structural relationships between the RPE and choriocapillaris in health and disease.


Co-cultures of human RPE cells (ARPE-19 cells grown in Miller’s medium) and microvascular endothelial cells (HMEC-1 cells grown in endothelial culture medium) were established on opposing sides of a synthetic Bruch’s membrane (3 microns thick) constructed from B mori silk fibroin. Cell attachment was facilitated by pre-coating the fibroin membrane with vitronectin (for ARPE-19 cells) and gelatin (for HMEC-1 cells) respectively. The effects of tropoelastin on attachment of ARPE-19 cells was also examined. Barrier function was examined by measurement of trans-epithelial resistance (TER) using a voltohmmeter (EVOM-2). The phagocytic activity of the synthetic RPE was tested using vitronectin-coated microspheres (2 micron diameter FluoSpheres). In some cultures, membrane defects were created by puncturing within a 24 G needle. The architecture of the synthetic tissue before and after wounding was examined by confocal microscopy after staining for ZO-1 and F-actin.


The RPE layer of the 3D model developed a cobblestoned morphology (validated by staining for ZO-1 and F-actin), displayed barrier function (validated by measurement of TER) and demonstrated cytoplasmic uptake of vitronectin-coated microspheres. Attachment of ARPE-19 cells to fibroin was unaffected by tropoelastin. Microvascular endothelial cells attached well to the gelatin-coated surface of the fibroin membrane and remained physically separated from the overlaying RPE layer. The fibroin membranes were amenable to puncturing without collapse thus providing the opportunity to study transmembrane migration of the endothelial cells.


Synthetic Bruch’s membranes constructed from silk fibroin, vitronectin and gelatin, support the co-cultivation of RPE cells and microvascular endothelial cells. The resulting RPE layer displays functions similar to that of native RPE and the entire tri-layered structure displays potential to be used as an in vitro model of choroidal neovascularization.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 58316
Item Type: Journal Article
Refereed: Yes
ISSN: 1552-5783
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100) > Cellular Interactions (incl. Adhesion Matrix Cell Wall) (060106)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > OPTOMETRY AND OPHTHALMOLOGY (111300) > Ophthalmology (111301)
Divisions: Current > Schools > School of Biomedical Sciences
Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 Association for Research in Vision and Ophthalmology
Deposited On: 18 Mar 2013 03:49
Last Modified: 02 Feb 2015 03:43

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page