Early-mid Cretaceous tectonic evolution of eastern Gondwana : from silicic LIP magmatism to continental rupture

Bryan, Scott Edward, Cook, Alex, Allen, Charlotte M., Siegel, Coralie, Purdy, David, Greentree, James, & Uysal, Tonguc (2012) Early-mid Cretaceous tectonic evolution of eastern Gondwana : from silicic LIP magmatism to continental rupture. Episodes, 35(1), pp. 142-152.

View at publisher (open access)


The Early–mid Cretaceous marks the confluence of three major continental-scale events in eastern Gondwana:

(1) the emplacement of a Silicic Large Igneous Province (LIP) near the continental margin; (2) the volcaniclastic fill, transgression and regression of a major epicontinental seaway developed over at least a quarter of the Australian continent; and (3) epeirogenic uplift, exhumation and continental rupturing culminating in the opening of the Tasman Basin c. 84 Ma.

The Whitsunday Silicic LIP event had widespread impact, producing both substantial extrusive volumes of dominantly silicic pyroclastic material and coeval first-cycle volcanogenic sediment that accumulated within many eastern Australian sedimentary basins, and principally in the Great Australian Basin system (>2 Mkm3 combined volume). The final pulse of volcanism and volcanogenic sedimentation at c. 105–95 Ma coincided with epicontinental seaway regression, which shows a lack of correspondence with the global sea-level curve, and alternatively records a wider, continental-scale effect of volcanism and rift tectonism. Widespread igneous underplating related to this LIP event is evident from high paleogeothermal gradients and regional hydrothermal fluid flow detectable in the shallow crust and over a broad region. Enhanced CO2 fluxing through sedimentary basins also records indirectly, large-scale, LIP-related mafic underplating. A discrete episode of rapid crustal cooling and exhumation began c. 100–90 Ma along the length of the eastern Australian margin, related to an enhanced phase of continental rifting that was largely amagmatic, and probably a switch from wide–more narrow rift modes.

Along-margin variations in detachment fault architecture produced narrow (SE Australia) and wide continental margins with marginal, submerged continental plateaux (NE Australia). Long-lived NE-trending cross-orogen lineaments controlled the switch from narrow to wide continental margin geometries.

Impact and interest:

25 citations in Scopus
Search Google Scholar™
23 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

824 since deposited on 21 Mar 2013
130 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 58545
Item Type: Journal Article
Refereed: Yes
Keywords: 040313, 040303, 040304, 040314, 040311
Divisions: Current > Schools > School of Earth, Environmental & Biological Sciences
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 International Union of Geological Sciences
Deposited On: 21 Mar 2013 05:38
Last Modified: 22 Mar 2013 16:42

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page