Data requirements and graph data structures for a multi-modal, multi-objective trip planner

Casey, Bradley, Bhaskar, Ashish, & Chung, Edward (2012) Data requirements and graph data structures for a multi-modal, multi-objective trip planner. In 25th ARRB Conference Proceedings, Pan Pacific Hotel, Perth, Western Australia.

View at publisher (open access)


Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

87 since deposited on 28 Mar 2013
11 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 58735
Item Type: Conference Paper
Refereed: Yes
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Transport Engineering (090507)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Current > Research Centres > Smart Transport Research Centre
Copyright Owner: Copyright 2012 ARRB Group Ltd and Authors
Deposited On: 28 Mar 2013 05:23
Last Modified: 07 Apr 2013 03:43

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page