Comparison of two suspension control strategies for multi-axle heavy truck

Chen, Yi-kai, He, Jie, King, Mark J., Feng, Zhong-xiang, & Zhang, Wei-hua (2013) Comparison of two suspension control strategies for multi-axle heavy truck. Journal of Central South University, 20(2), pp. 550-562.

View at publisher (open access)


Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototype (FVP) model and compared in terms of road friendliness and ride comfort. A four-axle heavy truck-road coupling system model was established using FVP technology and validated through a ride comfort test. Then appropriate passive air suspensions were chosen to replace the rear tandem suspensions of the original truck model for preliminary optimization. The mechanical properties and time lag of dampers were taken into account in simulations of MSD and PID semi-active dampers implemented using MATLAB/Simulink. Through co-simulations with Adams and MATLAB, the effects of semi-active MSD and PID control were analyzed and compared, and control parameters which afforded the best comprehensive performance for each control strategy were chosen. Simulation results indicate that compared with the passive air suspension truck, semi-active MSD control improves both ride comfort and road-friendliness markedly, with optimization ratios of RMS vertical acceleration and RMS tyre force ranging from 10.1% to 44.8%. However, semi-active PID control only reduces vertical vibration of the driver’s seat by 11.1%, 11.1% and 10.9% on A, B and C level roads respectively. Both strategies are robust to the variation of road level.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

543 since deposited on 02 Apr 2013
80 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 58802
Item Type: Journal Article
Refereed: Yes
Keywords: MSD control, PID control, heavy truck, suspension, ride comfort, road damage
DOI: 10.1007/s11771-013-1518-7
ISSN: 2095-2899
Divisions: Current > Research Centres > Centre for Accident Research & Road Safety - Qld (CARRS-Q)
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Psychology & Counselling
Copyright Owner: Copyright 2013 Central South University Press and Springer-Verlag Berlin Heidelberg
Copyright Statement: The final publication is available at
Deposited On: 02 Apr 2013 02:02
Last Modified: 25 Apr 2013 10:38

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page