Design, simulation and analysis of a parallel hybrid electric propulsion system for unmanned aerial vehicles

Hung, Jane Y. & Gonzalez, Luis Felipe (2012) Design, simulation and analysis of a parallel hybrid electric propulsion system for unmanned aerial vehicles. In Proceedings of the 28th International Congress of the Aeronautical Sciences, Optimage Ltd., Brisbane Convention & Exhibition Centre, Brisbane, QLD, pp. 1-13, Brisbane Convention & Exhibition Centre, Brisbane, QLD.

View at publisher


Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks.

Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals.

This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

394 since deposited on 15 Apr 2013
46 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 59105
Item Type: Conference Paper
Refereed: Yes
Keywords: Unmanned Aerial Vehicles , energy, hybrid, propulsion, UAV, aicraft propulsion, electric UAV
Subjects: Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Impact Assessment (050204)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > COMPUTER SOFTWARE (080300)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Flight Dynamics (090106)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Current > Schools > School of Electrical Engineering & Computer Science
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 [please consult the author]
Deposited On: 15 Apr 2013 22:34
Last Modified: 08 May 2013 05:08

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page