Multidisciplinary design and flight testing of a remote gas/particle airborne sensor system

Gonzalez, Luis Felipe, Castro, Marcos P.G., & Tamagnone, Francesco Francesco (2012) Multidisciplinary design and flight testing of a remote gas/particle airborne sensor system. In Proceedings of the 28th International Congress of the Aeronautical Sciences, Optimage Ltd., Brisbane Convention & Exhibition Centre, Brisbane, QLD, pp. 1-13, Brisbane Convention & Exhibition Centre, Brisbane, QLD.

Abstract

The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.

Impact and interest:

2 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,517 since deposited on 15 Apr 2013
25 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 59106
Item Type: Conference Paper
Refereed: Yes
Keywords: Unmanned Aerial Vehicles , gas, sensing, UAV, flying robots, multidisciplinary , aerospace, airborne sensor, partice, environmental monitoring
Subjects: Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Impact Assessment (050204)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Monitoring (050206)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > COMPUTER SOFTWARE (080300)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Flight Dynamics (090106)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Current > Schools > School of Electrical Engineering & Computer Science
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 [please consult the author]
Deposited On: 15 Apr 2013 22:28
Last Modified: 17 Apr 2013 06:49

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page