Pt/MoO3 nano-flower/SiC Schottky diode based hydrogen gas sensor

Shafiei, M., Yu, J, Breedon, M, Moafi, A, Kaner, R.B., & Galatsis, K (2010) Pt/MoO3 nano-flower/SiC Schottky diode based hydrogen gas sensor. In Fedder, Gary (Ed.) Ninth IEEE Conference on SENSORS proceedings, IEEE, Kona, Hawaii, pp. 354-357.

View at publisher


In this paper, we report the development of a novel Pt/MoO3 nano-flower/SiC Schottky diode based device for hydrogen gas sensing applications. The MoO3 nanostructured thin films were deposited on SiC substrates via thermal evaporation. Morphological characterization of the nanostructured MoO3 by scanning electron microscopy revealed randomly orientated thin nanoplatelets in a densely packed formation of nano-flowers with dimensions ranging from 250 nm to 1 μm. Current-voltage characteristics of the sensor were measured at temperatures from 25°C to 250°C. The sensor showed greater sensitivity in a reverse bias condition than in forward bias. Dynamic response of the sensor was investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 250°C and a large voltage shift of 5.7 V was recorded upon exposure to 1% hydrogen.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

62 since deposited on 02 May 2013
6 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 59578
Item Type: Conference Paper
Refereed: Yes
ISBN: 978-1-4244-8168-2
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > ANALYTICAL CHEMISTRY (030100) > Sensor Technology (Chemical aspects) (030107)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanomaterials (100708)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanoscale Characterisation (100712)
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: © 2010 IEEE.
Deposited On: 02 May 2013 00:38
Last Modified: 12 Jul 2013 11:05

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page