A comparative study of different porous amorphous silica minerals supported TiO2 catalysts

Sun, Zhiming, Bai, Chunhua, Zheng, Shuilin, Yang, Xiaoping, & Frost, Ray L. (2013) A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Applied Catalysis A: General, 458, pp. 103-110.

View at publisher

Abstract

Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.

Impact and interest:

36 citations in Scopus
Search Google Scholar™
38 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

169 since deposited on 06 May 2013
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 59662
Item Type: Journal Article
Refereed: Yes
Keywords: TiO2, Diatomite, Opal, Porous precipitated SiO2, Photocatalytic activity
DOI: 10.1016/j.apcata.2013.03.035
ISSN: 0926-860X
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Elsevier B.V. All rights reserved.
Copyright Statement: This is the author’s version of a work that was accepted for publication in the journal, Applied Catalysis A: General. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Catalysis A: General, Volume 458, 10 May 2013, Pages 103–110. DOI: 10.1016/j.apcata.2013.03.035
Deposited On: 06 May 2013 03:40
Last Modified: 11 May 2013 03:58

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page