The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib and ponatinib ATP-competitive inhibitors

Byron, Sara A., Chen, Huaibin, Wortmann, Andreas, Loch, David, Gartside, Michael, Dehkhoda, Farhad, Blais, Steven P. , Neubert, Thomas A. , Mohammadi, Moosa, & Pollock, Pamela M. (2013) The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib and ponatinib ATP-competitive inhibitors. NeoPlasia, 15(8), pp. 975-988.

View at publisher


We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified fourteen dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2mutant endometrial cancers (EC). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors. Whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2mutant cell lines, 3/7 showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2N550K in JHUEM-2 cells (FGFR2C383R) conferred resistance (~5 fold) to PD173074, providing independent data that FGFR2N550K can be associated with drug resistance. Biochemical in vitro kinase analyses also shows ponatinib is more effective than dovitinib at inhibiting FGFR2N550K. We propose tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.

Impact and interest:

35 citations in Scopus
35 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

352 since deposited on 22 May 2013
6 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 60164
Item Type: Journal Article
Refereed: Yes
Keywords: FGFR, dovitinib, ponatinib, resistance, mutation, PD173074, inhibition, gatekeeper
DOI: 10.1593/neo.121106
ISSN: 1522-8002
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > GENETICS (060400)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > ONCOLOGY AND CARCINOGENESIS (111200)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2013 Neoplasia Press, Inc
Deposited On: 22 May 2013 22:18
Last Modified: 19 Aug 2013 03:59

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page