Effects of whole body cryotherapy and cold water immersion on knee skin temperature

Costello, Joseph, Donnelly, Alan, Karki, Anne, & Selfe, James (2014) Effects of whole body cryotherapy and cold water immersion on knee skin temperature. International Journal of Sports Medicine, 35(1), pp. 35-40.

View at publisher

Abstract

This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of − 110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature ( < 13 °C) believed to be required for analgesic purposes. After ethics committee approval and written informed consent was obtained, 10 healthy males (26.5 ± 4.9 yr, 183.5 ± 6.0 cm, 90.7 ± 19.9 kg, 26.8 ± 5.0 kg/m 2 , 23.0 ± 9.3 % body fat; mean ± SD) participated in this randomised controlled crossover study. Skin temperature around the patellar region was assessed in both knees via non-contact, infrared thermal imaging and recorded pre-, immediately post-treatment and every 10 min thereafter for 60 min. Compared to baseline, average, minimum and maximum skin temperatures were significantly reduced (p < 0.001) immediately post-treatment and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Average and minimum skin temperatures were lower (p < 0.05) immediately after whole body cryotherapy (19.0 ± 0.9 ° C) compared to cold water immersion (20.5 ± 0.6 ° C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p < 0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect.

Impact and interest:

8 citations in Scopus
Search Google Scholar™
4 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

422 since deposited on 21 Jun 2013
54 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 60878
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Cryotherapy, Tissue Temperature, Cryokinetics, Extreme Environments
DOI: 10.1055/s-0033-1343410
ISSN: 1439-3964 (online) 0172-4622 (print)
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Exercise Physiology (110602)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Sports Medicine (110604)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Human Movement and Sports Science not elsewhere classified (110699)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Exercise & Nutrition Sciences
Copyright Owner: Copyright 2013 Georg Thieme Verlag KG Stuttgart · New York
Copyright Statement: Author's Pre-print: author cannot archive pre-print (ie pre-refereeing)
Author's Post-print: author can archive post-print (ie final draft post-refereeing)
Publisher's Version/PDF: author cannot archive publisher's version/PDF
Deposited On: 21 Jun 2013 02:09
Last Modified: 14 Jan 2014 19:35

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page