An integrated framework for assessing community resilience in disaster management

Teo, Melissa, Goonetilleke, Ashantha, & Ziyath, Abdul Mohamed (2015) An integrated framework for assessing community resilience in disaster management. In Barnes, Paul H. & Goonetilleke, Ashantha (Eds.) Proceedings of the 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction (8-10 July 2013), Queensland University of Technology, Brisbane, Australia, pp. 309-314.

View at publisher (open access)


Climate change is predicted to increase the frequency and severity of extreme weather events which pose significant challenges to the ability of government and other relief agencies to plan for, cope with and respond to disasters. Consequently, it is important that communities in climate sensitive and potential disaster prone areas strengthen their resilience to natural disasters in order to expeditiously recover from potential disruptions and damage caused by disasters. Building self reliance and, particularly in the immediate aftermath of a disaster, can facilitate short-term and long-term community recovery. To build stronger and more resilient communities, it is essential to have a better understanding of their current resilience capabilities by assessing areas of strength, risks and vulnerabilities so that their strengths can be enhanced and the risks and vulnerability can be appropriately addressed and mitigated through capacity building programs. While a number of conceptual frameworks currently exist to assess the resilience level of communities to disasters, they have tended to differ on their emphasis, scope and definition of what constitutes community resilience and how community resilience can be most effectively and accurately assessed. These limitations are attributed to the common approach of viewing community resilience through a mono-disciplinary lens. To overcome this, this paper proposes an integrated conceptual framework that takes into account the complex interplay of environmental, social, governance, infrastructure and economic attributes associated with community resilience. The framework can be operationalised using a range of resilience indicators to suit the nature of a disaster and the specific characteristics of a study region.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

352 since deposited on 18 Jul 2013
81 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 61431
Item Type: Conference Paper
Refereed: Yes
Additional Information: Conference held July 2013. Proceedings published online March 2015.
Keywords: disaster resilience, resilience framework, adaptive capacity, vulnerability, community, CEDM, An integrated framework for assessing community resilience in disaster management
ISBN: 9781921897733
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Infrastructure Engineering and Asset Management (090505)
Australian and New Zealand Standard Research Classification > BUILT ENVIRONMENT AND DESIGN (120000) > OTHER BUILT ENVIRONMENT AND DESIGN (129900) > Built Environment and Design not elsewhere classified (129999)
Divisions: Current > Research Centres > Centre for Emergency & Disaster Management
Current > Schools > School of Civil Engineering & Built Environment
Current > Schools > School of Earth, Environmental & Biological Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Queensland University of Technology
Deposited On: 18 Jul 2013 23:08
Last Modified: 10 Apr 2015 10:06

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page