Spectroscopic investigation of the polymerisation of pyrrole and thiophene within zeolite channels

Millar, Graeme J., McCann, Graham F., Hobbis, Catherine M., Bowmaker, Graham A., & Cooney, Ralph P. (1994) Spectroscopic investigation of the polymerisation of pyrrole and thiophene within zeolite channels. Journal of the Chemical Society, Faraday Transactions, 90(17), pp. 2579-2584.

View at publisher


The reaction of pyrrole and thiophene monomers with copper- or nickel-exchanged mordenite has been investigated using X-ray photoelectron (XPS) and photoacoustic infrared (PAIRS) spectroscopies. Because of the differing oxidising powers of the cations studied, polymerisation occurred only with copper-exchanged mordenite. PAIRS and XPS data indicated that both polypyrrole and polythiophene were partially oxidised when synthesised within the zeolite structure. IR spectra of polythiophene and polythiophene and polypyrrole showed intense bands typical of ring vibrations which could couple to the large dipole change induced by charges moving along the polythiophene chain. In addition it was noted that only vibrations typical of oxidised polymer structures were recorded, suggesting that the charge carrier was located within these segments. Furthermore, N 1s spectra contained a high binding energy peak at 402.5 eV which was attributed to a positively charged nitrogen species, in agreement with IR data. Significantly, C 1s spectra confirmed that molecular wires were formed within the confines of the zeolite lattice. Depth-profiling experiments suggested that polypyrrole was distributed throughout the entire zeolite host. By contrast, polythiophene may have been restricted to the uppermost zeolite channels owing to the ability of sulfur species to bond to CuI sites [produced by reduction of copper(II) ions during the polymerisation process], thus obstructing movement along the channels.

Impact and interest:

11 citations in Scopus
Search Google Scholar™
28 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 62060
Item Type: Journal Article
Refereed: Yes
Keywords: zeolite, catalyst, polypyyrole, polythiophene, molecular wire
DOI: 10.1039/FT9949002579
ISSN: 1364-5455
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Catalysis and Mechanisms of Reactions (030601)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 25 Aug 2013 23:05
Last Modified: 25 Aug 2013 23:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page