The role of intensity of interval training on fat oxidation and eating behaviour in overweight/obese men

Alkahtani, Shaea (2012) The role of intensity of interval training on fat oxidation and eating behaviour in overweight/obese men. PhD thesis, Queensland University of Technology.

Abstract

The increasing prevalence of obesity in society has been associated with a number of atherogenic risk factors such as insulin resistance. Aerobic training is often recommended as a strategy to induce weight loss, with a greater impact of high-intensity levels on cardiovascular function and insulin sensitivity, and a greater impact of moderate-intensity levels on fat oxidation. Anaerobic high-intensity (supramaximal) interval training has been advocated to improve cardiovascular function, insulin sensitivity and fat oxidation. However, obese individuals tend to have a lower tolerance of high-intensity exercise due to discomfort. Furthermore, some obese individuals may compensate for the increased energy expenditure by eating more and/or becoming less active. Recently, both moderate- and high-intensity aerobic interval training have been advocated as alternative approaches. However, it is still uncertain as to which approach is more effective in terms of increasing fat oxidation given the issues with levels of fitness and motivation, and compensatory behaviours. Accordingly, the objectives of this thesis were to compare the influence of moderate- and high-intensity interval training on fat oxidation and eating behaviour in overweight/obese men.

Two exercise interventions were undertaken by 10-12 overweight/obese men to compare their responses to study variables, including fat oxidation and eating behaviour during moderate- and high-intensity interval training (MIIT and HIIT). The acute training intervention was a methodological study designed to examine the validity of using exercise intensity from the graded exercise test (GXT) - which measured the intensity that elicits maximal fat oxidation (FATmax) - to prescribe interval training during 30-min MIIT. The 30-min MIIT session involved 5-min repetitions of workloads 20% below and 20% above the FATmax. The acute intervention was extended to involve HIIT in a cross-over design to compare the influence of MIIT and HIIT on eating behaviour using subjective appetite sensation and food preference through the liking and wanting test. The HIIT consisted of 15-sec interval training at 85 %VO2peak interspersed by 15-sec unloaded recovery, with a total mechanical work equal to MIIT.

The medium term training intervention was a cross-over 4-week (12 sessions) MIIT and HIIT exercise training with a 6-week detraining washout period. The MIIT sessions consisted of 5-min cycling stages at ±20% of mechanical work at 45 %VO2peak, and the HIIT sessions consisted of repetitive 30-sec work at 90 %VO2peak and 30-sec interval rests, during identical exercise sessions of between 30 and 45 mins. Assessments included a constant-load test (45 %VO2peak for 45 mins) followed by 60-min recovery at baseline and the end of 4-week training, to determine fat oxidation rate. Participants’ responses to exercise were measured using blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) and were measured during the constant-load test and in the first intervention training session of every week during training. Eating behaviour responses were assessed by measuring subjective appetite sensations, liking and wanting and ad libitum energy intake.

Results of the acute intervention showed that FATmax is a valid method to estimate VO2 and BLa, but is not valid to estimate HR and RPE in the MIIT session. While the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax (0.16 ±0.09 and 0.14 ±0.08 g/min, respectively), fat oxidation was significantly higher at minute 25 of MIIT (P≤0.01). In addition, there was no significant difference between MIIT and HIIT in the rate of appetite sensations after exercise, but there was a tendency towards a lower rate of hunger after HIIT. Different intensities of interval exercise also did not affect explicit liking or implicit wanting.

Results of the medium-term intervention indicated that current interval training levels did not affect body composition, fasting insulin and fasting glucose. Maximal aerobic capacity significantly increased (P≤0.01) (2.8 and 7.0% after MIIT and HIIT respectively) during GXT, and fat oxidation significantly increased (P≤0.01) (96 and 43% after MIIT and HIIT respectively) during the acute constant-load exercise test. RPE significantly decreased after HIIT greater than MIIT (P≤0.05), and the decrease in BLa was greater during the constant-load test after HIIT than MIIT, but this difference did not reach statistical significance (P=0.09). In addition, following constant-load exercise, exercise-induced hunger and desire to eat decreased after HIIT greater than MIIT but were not significant (p value for desire to eat was 0.07). Exercise-induced liking of high-fat sweet (HFSW) and high-fat non-sweet (HFNS) foods increased after MIIT and decreased after HIIT (p value for HFNS was 0.09). The intervention explained 12.4% of the change in fat intake (p = 0.07).

This research is significant in that it confirmed two points in the acute study. While the rate of fat oxidation increased during MIIT, the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax. In addition, manipulating the intensity of acute interval exercise did not affect appetite sensations and liking and wanting. In the medium-term intervention, constant-load exercise-induced fat oxidation significantly increased after interval training, independent of exercise intensity. In addition, desire to eat, explicit liking for HFNS and fat intake collectively confirmed that MIIT is accompanied by a greater compensation of eating behaviour than HIIT.

Findings from this research will assist in developing exercise strategies to provide obese men with various training options. In addition, the finding that overweight/obese men expressed a lower RPE and decreased BLa after HIIT compared with MIIT is contrary to the view that obese individuals may not tolerate high-intensity interval training. Therefore, high-intensity interval training can be advocated among the obese adult male population. Future studies may extend this work by using a longer-term intervention.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

791 since deposited on 29 Aug 2013
143 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 62192
Item Type: QUT Thesis (PhD)
Supervisor: Byrne, Nuala M., King, Neil A., & Hills, Andrew P.
Keywords: appetite sensations, compensatory responses, eating behaviour, fat oxidation, food intake, interval training, liking and wanting, obesity
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Institution: Queensland University of Technology
Deposited On: 29 Aug 2013 04:49
Last Modified: 02 Mar 2016 05:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page