A new method to detect loss of heterozygosity using cohort heterozygosity comparisons

Green, Michael R., Jardine, Paul, Wood, Peter, Wellwood, Jeremy, Lea, Rod A., Marlton, Paula, & Griffiths, Lyn R. (2010) A new method to detect loss of heterozygosity using cohort heterozygosity comparisons. BMC Cancer, 10(1), p. 195.

View at publisher (open access)

Abstract

Background Loss of heterozygosity (LOH) is an important marker for one of the 'two-hits' required for tumor suppressor gene inactivation. Traditional methods for mapping LOH regions require the comparison of both tumor and patient-matched normal DNA samples. However, for many archival samples, patient-matched normal DNA is not available leading to the under-utilization of this important resource in LOH studies. Here we describe a new method for LOH analysis that relies on the genome-wide comparison of heterozygosity of single nucleotide polymorphisms (SNPs) between cohorts of cases and un-matched healthy control samples. Regions of LOH are defined by consistent decreases in heterozygosity across a genetic region in the case cohort compared to the control cohort.

Methods DNA was collected from 20 Follicular Lymphoma (FL) tumor samples, 20 Diffuse Large B-cell Lymphoma (DLBCL) tumor samples, neoplastic B-cells of 10 B-cell Chronic Lymphocytic Leukemia (B-CLL) patients and Buccal cell samples matched to 4 of these B-CLL patients. The cohort heterozygosity comparison method was developed and validated using LOH derived in a small cohort of B-CLL by traditional comparisons of tumor and normal DNA samples, and compared to the only alternative method for LOH analysis without patient matched controls. LOH candidate regions were then generated for enlarged cohorts of B-CLL, FL and DLBCL samples using our cohort heterozygosity comparison method in order to evaluate potential LOH candidate regions in these non-Hodgkin's lymphoma tumor subtypes.

Results Using a small cohort of B-CLL samples with patient-matched normal DNA we have validated the utility of this method and shown that it displays more accuracy and sensitivity in detecting LOH candidate regions compared to the only alternative method, the Hidden Markov Model (HMM) method. Subsequently, using B-CLL, FL and DLBCL tumor samples we have utilised cohort heterozygosity comparisons to localise LOH candidate regions in these subtypes of non-Hodgkin's lymphoma. Detected LOH regions included both previously described regions of LOH as well as novel genomic candidate regions.

Conclusions We have proven the efficacy of the use of cohort heterozygosity comparisons for genome-wide mapping of LOH and shown it to be in many ways superior to the HMM method. Additionally, the use of this method to analyse SNP microarray data from 3 common forms of non-Hodgkin's lymphoma yielded interesting tumor suppressor gene candidates, including the ETV3 gene that was highlighted in both B-CLL and FL.

Impact and interest:

4 citations in Scopus
Search Google Scholar™
4 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

59 since deposited on 17 Sep 2013
13 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 62587
Item Type: Journal Article
Refereed: Yes
DOI: 10.1186/1471-2407-10-195
ISSN: 1471-2407
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2010 the authors
Deposited On: 17 Sep 2013 03:40
Last Modified: 06 Jul 2014 05:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page