Fabrication and mechanical and thermal behaviour of graphene oxide/epoxy nanocomposites

Galpaya, Dilini, Wang, Mingchao, Yan, Cheng, Liu, Meinan, Motta, Nunzio, & Waclawik, Eric R. (2013) Fabrication and mechanical and thermal behaviour of graphene oxide/epoxy nanocomposites. Journal of Multifunctional Composites, 1(2), pp. 91-98.

View at publisher

Abstract

Bulk amount of graphite oxide was prepared by oxidation of graphite using the modified Hummers method and its ultrasonication in organic solvents yielded graphene oxide (GO). X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. XPS survey spectrum of GO revealed the presence of 66.6 at% C and 30.4 at% O. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphene oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. GO/epoxy nanocomposites were prepared by typical solution mixing technique and influence of GO on mechanical and thermal properties of nanocomposites were investigated. As for the mechanical behaviour of GO/epoxy nanocomposites, 0.5 wt% GO in the nanocomposite achieved the maximum increase in the elastic modulus (~35%) and tensile strength (~7%). The TEM analysis provided clear image of microstructure with homogeneous dispersion of GO in the polymer matrix. The improved strength properties of GO/epoxy nanocomposites can be attributed to inherent strength of GO, the good dispersion and the strong interfacial interactions between the GO sheets and the polymer matrix. However, incorporation of GO showed significant negative effect on composite glass transition temperature (Tg). This may arise due to the interference of GO on curing reaction of epoxy.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

286 since deposited on 23 Sep 2013
68 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 62750
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Graphene oxide, Epoxy nanocomposites, Mechanical properties
DOI: 10.12783/issn.2168-4286/1.2/Galpaya
ISSN: 2168-4286
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Composite and Hybrid Materials (091202)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 DEStech Publications, Inc.
Deposited On: 23 Sep 2013 00:30
Last Modified: 07 Feb 2014 09:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page