Metrological performances of a diffusion charger particle counter for personal monitoring

Buonanno, Giorgio, Jayaratne, Rohan, Morawska, Lidia, & Stabile, Luca (2014) Metrological performances of a diffusion charger particle counter for personal monitoring. Aerosol and Air Quality Research, 14, pp. 156-167.

[img] PDF (684kB)
Administrators only | Request a copy from author


Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed.

This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions.

Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.

Impact and interest:

13 citations in Scopus
Search Google Scholar™
10 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 62924
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: ultrafine particles, alveolar deposited surface area concentration, personal monitoring, exposure-risk assessment
ISSN: 1680-8584
Subjects: Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Monitoring (050206)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering not elsewhere classified (090799)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > OTHER ENGINEERING (099900) > Engineering not elsewhere classified (099999)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Please consult the authors
Deposited On: 26 Sep 2013 00:18
Last Modified: 26 Sep 2014 06:06

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page