Graphene-based thin film supercapacitor with graphene oxide as dielectric spacer

Liu, Jinzhang, Galpaya, Dilini, Notarianni, Marco, Yan, Cheng, & Motta, Nunzio (2013) Graphene-based thin film supercapacitor with graphene oxide as dielectric spacer. Applied Physics Letters, 103, 063108.

View at publisher

Abstract

Thin film supercapacitors are produced by using electrochemically exfoliated graphene (G) and wet-chemically produced graphene oxide (GO). Either G/GO/G stacked film or sole GO film are sandwiched by two Au films to make devices, where GO is the dielectric spacer. The addition of graphene film for charge storage can increase the capacitance about two times, compared to the simple Au electrode. It is found that the GO film has very high dielectric constant, accounting for the high capacitance of these devices. AC measurements reveal that the relative permittivity of GO is in the order of 104 within the frequency range of 0.1–70 Hz.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

490 since deposited on 26 Sep 2013
45 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 62972
Item Type: Journal Article
Refereed: Yes
Keywords: Graphene, Capacitor, Dielectric constant, Graphene oxide
DOI: 10.1063/1.4818337
ISSN: 0003-6951
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > CONDENSED MATTER PHYSICS (020400) > Condensed Matter Physics not elsewhere classified (020499)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Functional Materials (091205)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanomaterials (100708)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanoscale Characterisation (100712)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Funding:
Copyright Owner: Copyright 2013 AIP Publishing LLC
Deposited On: 26 Sep 2013 22:21
Last Modified: 27 Jun 2015 11:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page