Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas

Bray, Laura J., Heazlewood, Celena F., Munster, David J., Hutmacher, Dietmar W., Atkinson, Kerry, & Harkin, Damien G. (2014) Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas. Cytotherapy, 16(1), pp. 64-73.

View at publisher


Background aims

Mesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation.


MSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells.


Human L-MSC cultures were typically CD34−, CD45− and HLA-DR− and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation.


L-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.

Impact and interest:

9 citations in Scopus
Search Google Scholar™
12 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

17 since deposited on 01 Oct 2013
10 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 63044
Item Type: Journal Article
Refereed: Yes
Keywords: Corneal limbus, Mesenchymal stromal cells, Corneal transplantation, Cell therapy
DOI: 10.1016/j.jcyt.2013.07.006
ISSN: 1465-3249
Subjects: Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > MEDICAL BIOTECHNOLOGY (100400) > Regenerative Medicine (incl. Stem Cells and Tissue Engineering) (100404)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > IMMUNOLOGY (110700) > Transplantation Immunology (110708)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > OPTOMETRY AND OPHTHALMOLOGY (111300) > Ophthalmology (111301)
Divisions: Current > Schools > School of Biomedical Sciences
Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in Cytotherapy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cytotherapy, [VOL 16, ISSUE 1, (2014)] DOI: 10.1016/j.jcyt.2013.07.006
Deposited On: 01 Oct 2013 03:17
Last Modified: 02 Feb 2015 03:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page