Person re-identification using group information

Bialkowski, Alina, Lucey, Patrick J., Wei, Xinyu, & Sridharan, Sridha (2013) Person re-identification using group information. In Digital Image Computing : Technique and Applications (DICTA), IEEE, Wrest Point Hotel, Hobart, TAS.

View at publisher


After first observing a person, the task of person re-identification involves recognising an individual at different locations across a network of cameras at a later time. Traditionally, this task has been performed by first extracting appearance features of an individual and then matching these features to the previous observation. However, identifying an individual based solely on appearance can be ambiguous, particularly when people wear similar clothing (i.e. people dressed in uniforms in sporting and school settings). This task is made more difficult when the resolution of the input image is small as is typically the case in multi-camera networks. To circumvent these issues, we need to use other contextual cues. In this paper, we use "group" information as our contextual feature to aid in the re-identification of a person, which is heavily motivated by the fact that people generally move together as a collective group. To encode group context, we learn a linear mapping function to assign each person to a "role" or position within the group structure. We then combine the appearance and group context cues using a weighted summation. We demonstrate how this improves performance of person re-identification in a sports environment over appearance based-features.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

143 since deposited on 10 Oct 2013
8 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 63234
Item Type: Conference Paper
Refereed: Yes
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 IEEE
Copyright Statement: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
Deposited On: 10 Oct 2013 01:49
Last Modified: 17 Jan 2014 10:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page