Lateral impact response and parametric studies of axially loaded square concrete filled steel tube columns

Aghdamy, Sanam, Thambiratnam, David, Dhanasekar, Manicka, & Saiedi, Saied (2013) Lateral impact response and parametric studies of axially loaded square concrete filled steel tube columns. In Topping, B.H.V. & Iványi, P. (Eds.) Proceedings of the 14th International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Cagliari, Sardinia, Italy.

[img] Published Version (PDF 629kB)
Administrators only | Request a copy from author

View at publisher


This paper presents a numerical study on the response of axially loaded slender square concrete filled steel tube (CFST) columns under low velocity lateral impact loading. A finite element analysis (FEA) model was developed using the explicit dynamic nonlinear finite element code LS -DYNA in which the strain rate effects of both steel and concrete, contact between steel tube and concrete and confinement effect provided by the steel tube for the concrete were considered. The model also benefited from a relatively recent feature of LS-DYNA for applying a pre-loading in the explicit solver. The developed numerical model was verified for its accuracy and adequacy by comparing the results with experimental results available in the literature. The verified model was then employed to conduct a parametric study to investigate the influence of axial load level, impact location, support conditions, and slenderness ratio on the response of the CFST columns. A good agreement between the numerical and experimental results was achieved. The model could reasonably predict the impact load-deflection history and deformed shape of the column at the end of the impact event. The results of the parametric study showed that whilst impact location, axial load level and slenderness ratio can have a significant effect on the peak impact force, residual lateral deflection and maximum lateral deflection, the influence of support fixity is minimal. With an increase of axial load to up to a certain level, the peak force increases; however, a further increase in the axial load causes a decrease in the peak force. Both residual lateral deflection and maximum lateral deflection increase as axial load level increases. Shifting the impact location towards the supports increases the peak force and reduces both residual and maximum lateral deflections. A rise in slenderness ratio decreases the peak force and increases the residual and maximum lateral deflections.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 63268
Item Type: Conference Paper
Refereed: Yes
Keywords: Dynamic analysis, Numerical simulation, Concrete filled steel tube, Low velocity lateral impact
DOI: 10.4203/ccp.102.12
ISBN: 9781905088577
ISSN: 1759-3433
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2013 Civil-comp Press
Deposited On: 10 Oct 2013 22:53
Last Modified: 22 Oct 2013 21:24

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page