An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores

Vaquette, Cedryck, frochot, Celine, Rahouadj, Rachid, & Wang, Xiong (2008) An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86B(1), pp. 9-17.

View at publisher


Scaffolding is an essential issue in tissue engineering and scaffolds should answer certain essential criteria: biocompatibility, high porosity, and important pore interconnectivity to facilitate cell migration and fluid diffusion. In this work, a modified solvent castingparticulate leaching out method is presented to produce scaffolds with spherical and interconnected pores. Sugar particles (200–300 lm and 300–500 lm) were poured through a horizontal Meker burner flame and collected below the flame. While crossing the high temperature zone, the particles melted and adopted a spherical shape. Spherical particles were compressed in plastic mold. Then, poly-L-lactic acid solution was cast in the sugar assembly. After solvent evaporation, the sugar was removed by immersing the structure into distilled water for 3 days. The obtained scaffolds presented highly spherical interconnected pores, with interconnection pathways from 10 to 100 lm. Pore interconnection was obtained without any additional step. Compression tests were carried out to evaluate the scaffold mechanical performances. Moreover, rabbit bone marrow mesenchymal stem cells were found to adhere and to proliferate in vitro in the scaffold over 21 days. This technique produced scaffold with highly spherical and interconnected pores without the use of additional organic solvents to leach out the porogen.

Impact and interest:

19 citations in Scopus
Search Google Scholar™
25 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 63326
Item Type: Journal Article
Refereed: Yes
Keywords: scaffold; interconnectivity; tissue engineering; biocompatibility; biopolymer
DOI: 10.1002/jbm.b.30982
ISSN: 1552-4973
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 15 Oct 2013 05:26
Last Modified: 22 Nov 2013 04:35

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page