PV string per-module maximum power point enabling converters

Walker, Geoffrey R., Xue, John, & Sernia, Paul (2003) PV string per-module maximum power point enabling converters. In Duke, R. (Ed.) Australasian Universities Power Engineering Conference, AUPEC'03, University of Canterbury, Christchurch, New Zealand.


Many grid connected PV installations consist of a single series string of PV modules and a single DC-AC inverter. This efficiency of this topology can be enhanced with additional low power, low cost per panel converter modules. Most current flows directly in the series string which ensures high efficiency. However parallel Cúk or buck-boost DC-DC converters connected across each adjacent pair of modules now support any desired current difference between series connected PV modules. Each converter “shuffles” the desired difference in PV module currents between two modules and so on up the string. Spice simulations show that even with poor efficiency, these modules can make a significant improvement to the overall power which can be recovered from partially shaded PV strings.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

215 since deposited on 11 Dec 2014
128 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 63566
Item Type: Conference Paper
Refereed: Yes
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2003 [please consult the authors]
Deposited On: 11 Dec 2014 23:11
Last Modified: 11 Dec 2014 23:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page